a) We investigated whether phosphatidylinositol (PI) 3-kinase, which binds to tyrosine-phosphorylated ITAM, interacts with CD5 following T cell activation.

<table>
<thead>
<tr>
<th>Pair</th>
<th>Key</th>
<th>Path</th>
<th>prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>phosphatidylinositol (PI) 3-kinase,</td>
<td>P</td>
<td>NE1/NE1 nsubj(UP) bind/VBZ_PRED prep_to(DN) NE2/NE2</td>
<td>P</td>
</tr>
<tr>
<td>ITAM (3,9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phosphatidylinositol (PI) 3-kinase,</td>
<td>N</td>
<td>NE1/NE1 nsubj(UP) interact/VBZ_PRED prep_with(DN) NE2/NE2</td>
<td>P</td>
</tr>
<tr>
<td>CD5 (3,13)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITAM, CD5 (9,13)</td>
<td>N</td>
<td>NE1/NE1 prep_to(UP) bind/VBZ_PRED nsubj(DN) NE/NN nsubj(UP) interact/VBZ_PRED prep_with(DN) NE2/NE2</td>
<td>N</td>
</tr>
</tbody>
</table>

b) USF specifically interacts with Fra1 but not with other closely related family members, c-Fos, Fra2, FosB, or with c-Jun.

c) In contrast, physical interaction is not necessary for YY1 to repress Sp1- and CREB-mediated transcription.

<table>
<thead>
<tr>
<th>Pair</th>
<th>Key</th>
<th>Path</th>
<th>prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>YY1, Sp1 (9, 12)</td>
<td>N</td>
<td>NE1/NE1 nsubj(UP) repress/VB_PRED dobj(DN) NE2/NE2</td>
<td>P</td>
</tr>
<tr>
<td>YY1, CREB (9, 15)</td>
<td>N</td>
<td>NE1/NE1 nsubj(UP) repress/VB_PRED dobj(DN) transcription/NN amod(DN) NE2/NE2</td>
<td>P</td>
</tr>
<tr>
<td>Sp1, CREB (12, 15)</td>
<td>N</td>
<td>NE1/NE1 conj_and(DN) transcription/NN amod(DN) NE2/NE2</td>
<td>N</td>
</tr>
</tbody>
</table>

d) Recent studies indicate that the structural integrity of the Raf-CRD is also critical for Raf-1 interaction with 14-3-3 proteins.

<table>
<thead>
<tr>
<th>Pair</th>
<th>Key</th>
<th>Path</th>
<th>prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raf-CRD, Raf-1 (9, 14)</td>
<td>N</td>
<td>NE1/NE1 prep_of(UP) integrity/NN nsubj(UP) critical/JJ_PRED prep_for(DN) interaction/NN nn(DN) NE2/NE2</td>
<td>P</td>
</tr>
</tbody>
</table>