Additional file 1 — Scoring functions applied in statistical CGP

- **Gene** g_i: a gene
- **Strain** s_j: a bacterial isolate
- **Genome** G_j: The corresponding genome of s_j, which consists of the entire set of genes such that
 \[s_j \xrightarrow{has} G_j = \{ g_{j1}, g_{j2}, \ldots, g_{jm} \} \]
- **Gene product** y_k: the product of a gene (i.e., protein or RNA). For every gene product y_k, there exists at least one encoding gene g_i
 \[g_i \Rightarrow y_k \]
- **Gene equivalence**: Two genes are considered equivalent if genes g_i and g_j both encode for the same gene product y_k, i.e.
 \[g_i \equiv g_j \text{ if } g_i \Rightarrow y_k \text{ and } g_j \Rightarrow y_k \]
- **Set of gene products**: gene products of strain s_j
 \[G_j \text{ encodes for } Y_j = \{ y_{j1}, y_{j2}, \ldots, y_{jn} \} \]
- **Phenotype or function** p: the phenotypic expression of a bacterial strain
- **Phenotypic examples** E_p: For each phenotype p, a list of phenotypic examples can be gathered. Each e_j correspond to a bacterial strain s_j.
 \[E_p = \{ e_{p1}, e_{p2}, \ldots, e_{pn} \} \]
 where $e_{pk} \in \{ s_{p1}, s_{p2}, \ldots, s_{pn} \}$, are selected from bacterial strains display phenotype p.

Scoring functions

Sensitivity (sens) and specificity (spec)

Sensitivity is the proportion of candidate genes g present in genome G displaying phenotype p, whereas specificity is the proportion of genes g absent in genomes G that also do not display p. These measures are equivalent to the normalised rate of co-presence and co-absence of genes in the positive and negative genome examples respectively:

\[
sens(g) = P(g|G \in E_p^+) = \frac{TP}{TP + FN} \\
\]
\[
\text{spec}(g) = P(\neg g|G \in E_p^-) = \frac{TN}{TN + FP}
\]
Positive \((ppv)\) and negative \((npv)\) predictive values

The positive predictive values \((ppv)\), or precision, measures the proportion of positive genomes present when a gene is present. Similarly, the negative predictive values \((npv)\) measured the proportion of negative genomes are absent when a gene is absent.

\[
ppv(g) = P(G \in E_p^+ | g_i) = \frac{TP}{TP + FP} \\
npv(g) = P(G \in E_p^- | \neg g_i) = \frac{TN}{TN + FN}
\]

Arithmetic \((amss)\) and harmonic \((hmss)\) means of sensitivity and specificity

Both scoring functions \(amss\) and \(hmss\) balance the rates of co-presence and co-absence. The \(amss\) scoring function is the arithmetic midpoint between sensitivity and specificity. The \(hmss\) scoring function, which defines the harmonic mean between the conditional probabilities, is conceptually similar to \(amss\) but it penalises genes with very low sensitivities or specificities.

\[
amss(g) = \frac{1}{2} (sens(g) + spec(g)) \\
hmss(g) = \frac{1}{sens(g) + \frac{1}{spec(g)}}
\]

Odds ratios \((OR)\)

The odds ratio compares the odds of a gene present in the positive example versus the odds of a gene absent in the negative examples, such that:

\[
OR(g) = \frac{TP}{FN} \frac{TN}{FP} = \frac{TP \times TN}{FP \times FN}
\]

Chi-square \((chisq)\) and directional chi-square \((bchisq)\) scoring functions

\(\chi^2\) is a frequently-used statistic in testing variations between groups in discrete data. The \(chisq\) scoring function measured the deviation of the observed frequency from the expected proportion such that:

\[
chisq(g) = \sum_{i=1}^{n} \frac{(O_i - E_i)^2}{E_i} = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{(a_{ij} - E(a_{ij}))^2}{E(a_{ij})}
\]
where \(E(a_{ij}) = \frac{(a_{11}+a_{21})(a_{12}+a_{22})}{a_{11}+a_{21}+a_{12}+a_{22}} \), \(a_{ij} \) = elements in the 2 \(\times \) 2 contingency table.

The directional chi-square function (\(bchisq \)) is similar to \(chisq \), but genes that display an inverse association are reversed to the bottom of the rank. \(bchisq \) excludes genes that are inversely associated with \(p \).

\[
bchisq(g) = \begin{cases} +chisq(g) & \text{if } OR(g) \geq 1 \\ -chisq(g) & \text{if } OR(g) < 1 \\
\end{cases}
\]

F-measure (\(F \))

F-measure is a frequently used statistic in evaluating performance of information retrieval systems. It is defined as the harmonic mean between the sensitivity and precision, such that:

\[
F(g) = \frac{1}{\frac{1}{sens(g)} + \frac{1}{ppv(g)}}
\]
