Supplementary Information

Title: Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites

Authors:
Keith J. Dusoe, Sriram Vijayan, Thomas R. Bissell, Jie Chen, Jack E. Morley, Leopolodo Valencia Jr., Avinash M. Dongare, Mark Aindow, Seok-Woo Lee*

Department of Materials Science and Engineering & Institute of Materials Science, 97 North Eagleville Road, Unit 3136, Storrs, CT, 06269-3136, USA

Corresponding Author:
Seok-Woo Lee

• Address) Department of Materials Science and Engineering & Institute of Materials Science, 97 North Eagleville Road, Unit 3136 Storrs, CT 06269-3136, USA
• Email) seok-woo.lee@uconn.edu
• Telephone) 860-486-8028
1. Cu-Zr Binary Phase diagrams

There are three major Cu-Zr binary phase diagrams reported to date. Phase formation mechanisms in Cu-rich sections (>90 at.%) in phase diagrams are still under debate. Different thermal treatments produce Cu$_5$Zr, Cu$_{51}$Zr$_{14}$, and Cu$_9$Zr in this composition region. The crystal structure of Cu$_5$Zr features Cu and Zr alternating layers, which produces the superlattice diffraction pattern in Figure 1 of the manuscript. However, rapid solidification produces chemical inhomogeneity and internal strain, making analysis of the diffraction data very difficult.

(1) Ref. 20 of the manuscript: Cu$_5$Zr is stable phase at room temperature.

![Figure S1. Cu-Zr phase diagram.](image.png)
(2) Ref. 21 of the manuscript: Cu₉Zr₂ is the stable phase at room temperature.

Figure S2. Cu-Zr phase diagram.

(3) Ref. 22 of the manuscript: Cu₅₁Zr₁₄ is the stable phase, and Cu₅Zr is the metastable phase at room temperature.

Figure S3. Cu-Zr phase diagram.
2. X-ray diffraction data and additional TEM analysis.

We performed X-ray diffraction (XRD) analysis for Cu-Zr-Al and Cu-Zr-Ti systems as well as TEM analysis on Cu-Zr-Ti system. For Cu-Zr-Ti system, XRD results showed Cu, Cu$_5$Zr, and Cu$_4$Ti phases (Figure S4(a)). Note that Cu$_4$Ti was not shown in our previous manuscript. In order to confirm the existence of Cu$_4$Ti phase, we performed additional TEM analysis. The bright field image and diffraction pattern with the [1 0 -1] zone axis confirms that Cu$_4$Ti phase indeed exists. The composition map in HAADF image also confirms that Cu$_4$Ti phase does not include Zr (Figure S5). However, we noticed that the volume fraction of Cu$_4$Ti is much smaller than that of Cu and Cu$_5$Zr. For Cu-Zr-Al system, XRD results show Cu, Cu$_5$Zr, and nanocrystalline phases (Figure S4(b)). These results are consistent with our TEM results in Figure 1. Also, there is a peak that the database could not index. As discussed in the first paragraph of Results section (page 4 of the manuscript), the phase formation mechanism in Cu-Zr binary system is still under debate, and several different phases seem to be formed within the narrow range of composition. Also, rapid solidification process often causes severe lattice distortion. Thus, minor peaks would be associated with unknown phases and severe lattice distortion, so it is difficult to index them. In conclusion, Cu and Cu$_5$Zr phases occupy the major volume fraction of Cu-based MINCs although there are minor phases such as nanocrystalline phase in Cu-Zr-Al system and Cu$_4$Ti phase in Cu-Zr-Ti system. Thus, Cu and Cu$_5$Zr phases would primarily control mechanical properties of our MINCs.

![Figure S4](image_url)

Figure S4. X-ray diffraction data of (a) Cu$_{85}$Zr$_{10}$Ti$_5$ and (b) Cu$_{85}$Zr$_{10}$Al$_5$.
Figure S5. (a) The TEM bright field image of Cu₄Ti and Cu₅Zr phases in Cu₈₅Zr₁₀Ti₅ and HAADF composition map of (b) Cu, (c) Zr, and (d) Ti at the area of broken line box in Figure S4(a).
3. High angular annular dark field (HADDF) analysis

Ti has good solid solubility in Cu at an elevated temperature (7.5 at.% at 900 °C), but negligible solubility at room temperature. By rapidly solidifying our alloy, the diffusion of Ti atoms from Cu grains, which would typically occur with conservative cooling, is halted, creating a non-equilibrium Cu phase which is supersaturated with Ti. Figure S6 shows that Ti atoms exist only in Cu grains. We were not able to find any Cu-Ti intermetallic compounds from both HADDF analysis and diffraction patterns. Thus, Ti atoms would exist as a solute atom in Cu grains.

![HADDF composition map of Cu, Ti and Zr in Cu₈₅Zr₁₀Ti₅ alloy. All Ti atoms exist only in Cu phase. Diffraction pattern does not show any Cu-Ti intermetallic compounds, which indicate that Cu and Ti forms supersaturated solid solution.](image)

Figure S6. HADDF composition map of Cu, Ti and Zr in Cu₈₅Zr₁₀Ti₅ alloy. All Ti atoms exist only in Cu phase. Diffraction pattern does not show any Cu-Ti intermetallic compounds, which indicate that Cu and Ti forms supersaturated solid solution.
4. Reference information of Figure 2(b)

Figure S7. Plastic strain vs. compressive failure strength of Cu-based bulk metallic glasses (BMGs), Cu-based bulk metallic glass composites (BMGCs), and Cu-based metal-intermetallic nanostructured composites in this study. Note that we included Cu-based materials that have Cu as a major element (the largest atomic percent) to consider Cu alloys only.

The list of references is given below. The reference number below corresponds to the number in Figure S5.

13. Baser TA, Eckert JD, Baricco M (2009) Glass formation and mechanical properties of (Cu$_{50}$Zr$_{50}$)$_{100-x}$Al$_{x}$ (x=0,4,5,7) bulk metallic glasses. *J Alloys Compd* 483(1-2):146-149

25. Park ES, Chang HJ, Kim DH, Ohkubo T, Hono K (2006) Effect of the substation on Ag and Ni for Cu on the glass forming ability and plasticity of Cu$_{60}$Zr$_{30}$Ti$_{10}$ alloy. *Scr Mater* 54(9):1569-1573

5. **Strong chemical resistance and large volume fraction of Cu-Zr intermetallic compound**

After short exposure to a concentrated solution of Nital etchant (50% nitric acid, 50% methanol), preferential and complete chemical attack on the Cu phase (with Ti solutes) is observed. The persistence of the Cu-Zr intermetallic phase illustrates the resistance of this phase to chemical dissolution. Additionally, the distribution of the Cu-Zr intermetallic phase is highlighted in the absence of the Cu phase, illustrating its large volume fraction in our material. From TEM image analysis, the volume fraction of intermetallic phase is nearly 60% (Note: The volume fraction measurement cannot be done with Figure S8 because Cu-Zr intermetallic phases are stacked up after removing Cu phases.).

Figure S8. Scanning electron microscope image of Cu$_{85}$Zr$_{10}$Ti$_5$ after short exposure to a concentrated solution of Nital etchant (50% nitric acid, 50% methanol).
6. Theoretical shear strength of Cu$_5$Zr and Cu

First-principles density functional theory calculations are carried out using Vienna ab initio simulation package (VASP) to obtain the theoretical strength in the most favorable slip systems in Cu$_5$Zr phase [1, 2], with the electronic-ion interaction described by a projector augmented wave method [3, 4] and a Perdew-Burke-Ernzerhof form generalized gradient approximation (GGA) [5] for the exchange-correlation potential. A plane wave basis sets wave function is expanded with a cutoff energy of 400eV. Brillouin zone integration was performed using a Monkhorst-Pack scheme [6], with a k-point mesh of 4x4x1 for {001} slip systems (6.89x6.89x23.78 Å3) and 6x3x1 for {111} slip systems (4.87x8.44x25.91 Å3). The crystal structure of Cu$_5$Zr phase is shown in Figure S9.

Density functional theory (DFT) calculations were carried out to determine and compare the resistance to plastic slip in Cu$_5$Zr and Cu phase. The generalized stacking fault (GSF) energies were calculated for various slip planes and directions (Figure S10). We carefully made the list of the potential slip planes based on the interplanar spacing. Typically, the large interplanar spacing enables the easy slip process. We found that the minimum energy barrier for slip in Cu$_5$Zr (~1000 mJ/m2) is much higher than that in Cu (~250 mJ/m2), which suggests a significantly high slip resistance as well as high strength in the Cu$_5$Zr intermetallic compound phase. Also, GSF curves show that the theoretical shear strength of Cu$_5$Zr is close to 8 GPa, but that of Cu is ~3 GPa. Therefore, Cu$_5$Zr is much stronger than Cu, and the large volume fraction (~60 %) of intermetallic phase would make the major contribution to the high strength of our MINCs.

Figure S9. Unit cell of Cu$_5$Zr intermetallic compound phase (Space group: F-43m, a = 0.687 nm)
Figure S10. (a) Two (0 0 1)/[1 -1 0] slip systems and (b) one (1 1 1)/[1 -1 0] slip system of Cu₅Zr IM phase. These slip systems are chosen based on the largest interplanar spacing, which is the pre-requisite of preferred slip process. (c) Generalized stacking fault energy curves of Cu₅Zr and Cu phases.

References
7. The effects of cooling rate on ductility of Cu$_{85}$Zr$_{10}$Ti$_5$

Cylindrical specimens having diameters of 1.5, 2 and 3mm were tested in compression to illustrate the effects of cooling rate on the ductility. Additionally, 2x2x4mm rectangular specimens were machined from the bulk pre-alloying ingot and compressed. Obviously, the bulk ingot undergoes solidification at the slowest cooling rate and the 1.5mm diameter casting is solidified at the highest rate observed in this work. A simultaneous increase in ductility and strength is observed as specimens of similar composition, Cu$_{85}$Zr$_{10}$Ti$_5$, are solidified with an increasing rate of cooling (Table 1 and Figure S11).

Based on the observation in Figure 3, ductility in Cu-based MINCs is not due to conventional dislocation-based plastic deformation mechanisms. Rather, it is the result of shear displacement at phase boundaries between metallic and intermetallic phases. In D~1.5 mm specimen, the ultra-fine microstructure of our rapidly cooled specimens would provide an optimum morphology and connectivity of phase boundaries. The elongated shape of the intermetallic phases, which are oriented 45 degrees from the loading direction, serves as a smooth sliding surface which allows for shear-driven phase boundary sliding to occur easily and accounts for the extensive compressive plasticity (~20%) observed. Intermetallic phases, which are not oriented along 45 degrees, would effectively obstruct the continuous propagation of shear deformation, preventing catastrophic brittle fracture from occurring. However, D~3 mm or ingot specimen contains coarser intermetallic compounds and more rough connectivity of phase boundary, leading to the formation of large cracks in intermetallic compounds and preventing effective phase boundary sliding, respectively. Figure S12 shows the formation of large cracks in coarse intermetallic compounds, which are not observed in D~1.5 mm specimen. These large cracks would propagate through a specimen, leading to early fracture.
Figure S11: Stress-strain plot illustrating the cooling rate effect upon ductility for MINC having composition of Cu$_{85}$Zr$_{10}$Ti$_5$. Ductility in Cu based MINCs has a strong cooling rate effect.

Figure S12. The development of large cracks in D~3mm Cu$_{85}$Zr$_{10}$Ti$_5$ specimen after compression test.