Supplementary Information

Synthesis and in vivo characterization of 18F-labeled difluoroboron-curcumin derivative for β-amyloid plaque imaging

Hyunjung Kim1, Young Hoon Im2, Jinhee Ahn2, Jehoon Yang3, Joon Young Choi2, Kyung-Han Lee1,2, Byung-Tae Kim2 & Yeon Seong Choe1,2

1Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
2Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
3Laboratory Animal Research Center, Samsung Medical Center, Seoul 06351, Korea

Contents:

1H NMR spectra of ligands (1-4)
19F NMR spectra of ligands (1-4)
HPLC chromatograms of ligands (1-4)
HPLC chromatogram of radioligand ([18F]2)
HPLC chromatogram of a mixture of [18F]2 and 2
Excitation and emission spectra of 2
Saturation binding curve of ligand 2 to Aβ aggregates
Proposed polar product standards
1H and 19F NMR spectra of ligands

Fig. S1. 1H NMR spectrum of ligand 1

Fig. S2. 19F NMR spectrum of ligand 1
Fig. S3. 1H NMR spectrum of ligand 2

Fig. S4. 19F NMR spectrum of ligand 2
Fig. S5. 1H NMR spectrum of ligand 3

Fig. S6. 19F NMR spectrum of ligand 3
Fig. S7. 1H NMR spectrum of ligand 4

Fig. S8. 19F NMR spectrum of ligand 4
HPLC chromatograms of non-radioactive ligands

HPLC column: YMC-Pack C18, 4.6 x 250 mm, 5 µm
HPLC solvents: 30:70 TFA (0.1%, aq)-CH₃CN; flow rate: 1 mL/min
Detection: UV (254 nm) detector

Fig. S9. HPLC chromatogram of ligand 1
Retention time: 7.474 min
Area % of product: 99.974%

Fig. S10. HPLC chromatogram of ligand 2
Retention time: 10.208 min
Area % of product: 99.923%
Fig. S11. HPLC chromatogram of ligand 3
Retention time: 8.958 min
Area % of product: 99.729%

Fig. S12. HPLC chromatogram of ligand 4
Retention time: 7.037 min
Area % of product: 99.968%
HPLC chromatograms of radioligand

HPLC column: YMC-Pack C18, 4.6 x 250 mm, 5 µm
HPLC solvents: 25:75 TFA (0.1%, aq)-CH₃CN; flow rate: 1 mL/min
Detection: radioactivity detector (red) and UV (254 nm) detector (blue)

Fig. S13. HPLC chromatogram of ligand [¹⁸F]2
Retention time: 7.648 min
Area % of product: 100% (radiochemical purity)

Fig. S14. HPLC chromatogram of a mixture of [¹⁸F]2 and 2
Retention time: 7.605 min
Area % of product: 100% (radiochemical purity)
Fig. S15. Excitation and emission spectra of 2 (2.5 µM) in methanol

Fig. S16. Saturation binding curve of ligand 2 to Aβ aggregates
Table S1. Proposed polar product standards

<table>
<thead>
<tr>
<th>Structure</th>
<th>Name</th>
<th>TLC Rf*</th>
<th>TLC Rf**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polar radioactive products (brain)</td>
<td>–</td>
<td>0</td>
<td>0.59 (major), 0.80, 0.95</td>
</tr>
<tr>
<td></td>
<td>2-Fluoroethanol (Merck)</td>
<td>0.49</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>2-(2-Fluoroethoxy)ethanol</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>4-(2-(2-Fluoroethoxy)ethoxy) benzoic acid (S1)</td>
<td>0.25</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>4-(2-(2-Fluoroethoxy)ethoxy) cinnamic acid (S2)</td>
<td>0.23</td>
<td>0.76</td>
</tr>
</tbody>
</table>

* TLC plates were developed in a 4:1 mixture of ethyl acetate–hexane and visualized using KMnO₄ staining solution.
** TLC plates were developed in a 1:1:0.01 dichloromethane–methanol–triethylamine and visualized using KMnO₄ staining solution.

Synthesis of S1 and S2

4-(2-(2-Fluoroethoxy)ethoxy)benzoic acid (S1). 4-(2-(2-Fluoroethoxy)ethoxy)benzaldehyde (15 mg, 0.07 mmol) was dissolved in 0.3 mL of acetone, and to this solution was added dropwise a solution of KMnO₄ (16.8 mg, 0.11 mmol) in 0.3 mL of water. The reaction mixture was stirred at rt for 20 min. After the mixture was acidified with 0.1 N HCl to pH 2-3, it was extracted with ethyl acetate, washed with water, and then dried over Na₂SO₄. Flash column chromatography (9.5:0.5 dichloromethane-methanol) gave S1 (12 mg, 75%) as a white solid. ¹H NMR ((CD₃)₂CO) δ 10.93 (s,1H), 8.00 (d, J = 9 Hz, 2H), 7.07 (d, J =9 Hz, 2H), 4.62 (dt, J = 48 and 2.5 Hz, 2H), 4.27 (t, J = 4.5 Hz, 2H), 3.90 (t, J = 4.5 Hz, 2H), 3.84 (dt, J = 30 and 2.5 Hz, 2H); ¹⁹F NMR ((CD₃)₂CO) δ -223.50; MS (FAB) m/z 229 (M+H)⁺: HRMS calcd for C₁₁H₁₄FO₄, 229.0876; found, 229.0871.

![Diagram](image5.png)

Figure S1. Synthesis of S1. Reagents and conditions: (a) KMnO₄, acetone-water, rt, 20 min
4-(2-(2-Fluoroethoxy)ethoxy)cinnamic acid (S2). (E)-Methyl 3-(4-(2-(2-
hydroxyethoxy)ethoxy)phenyl)acrylate (1). Methyl 4-hydroxycinnamate (500 mg, 2.81 mmol) and K$_2$CO$_3$ (582 mg, 4.21 mmol) were dissolved in 10 mL of DMF, and the solution was stirred at rt for 15 min. After addition of 2-(2-chloroethoxy)ethanol (0.59 mL, 5.61 mmol), the reaction mixture was stirred at 100 °C overnight. The mixture was extracted with ethyl acetate, washed with water, saturated NH$_4$Cl solution, and then dried over Na$_2$SO$_4$. Flash column chromatography (1:1 hexane-ethyl acetate) gave 1 (600 mg, 80.2%) as a white solid. 1H NMR (CDCl$_3$) δ 7.67 (d, J = 16 Hz, 1H), 7.48 (d, J = 9 Hz, 2H), 7.34 (d, J = 16 Hz, 1H), 4.18 (s, 3H), 3.70 (s, t, J = 4 Hz, 2H), 3.69 (t, J = 3.5 Hz, 2H); MS (EI) m/z 266 (M$^+$): HRMS calcd for C$_{14}$H$_{18}$O$_5$, 266.1154; found, 266.1154.

(E)-Methyl 3-(4-(2-(tosyloxy)ethoxy)ethoxy)phenyl)acrylate (2). Compound 1 (300 mg, 1.13 mmol) was dissolved in 2 mL dichloromethane, and to this solution was added p-toluenesulfonyl chloride (333 mg, 1.35 mmol). After addition of triethylamine (0.94 mL, 6.76 mmol) at 0 °C (ice bath), the reaction mixture was stirred at rt overnight. After the reaction was quenched with saturated NH$_4$Cl solution, the reaction mixture was extracted with dichloromethane, washed with water, and then dried over Na$_2$SO$_4$. Flash column chromatography (1:1 hexane-ethyl acetate) gave 2 (430 mg, 90.8%) as a white solid. 1H NMR (CDCl$_3$) δ 7.80 (d, J = 8 Hz, 2H), 7.66 (d, J = 16 Hz, 1H), 7.47 (d, J = 9 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 9 Hz, 2H), 6.33 (d, J = 16 Hz, 1H), 4.20 (t, J = 5 Hz, 2H), 4.09 (t, J = 5 Hz, 2H), 3.81 (t, J = 3 Hz, 2H), 3.80 (s, 3H), 3.77 (t, J = 5 Hz, 2H), 2.41 (s, 3H); MS (EI) m/z 420 (M$^+$): HRMS calcd for C$_{21}$H$_{25}$O$_7$S, 420.1243; found, 420.1241.

(E)-Methyl 3-(4-(2-(fluoroethoxy)ethoxy)phenyl)acrylate (3). Compound 2 (98 mg, 0.23 mmol) was dissolved in 5 mL t-BuOH, and to this solution was added CsF (106 mg, 0.70 mmol). After the reaction mixture was stirred at 100 °C overnight, it was extracted with ethyl acetate, washed with water, and then dried over Na$_2$SO$_4$. Flash column chromatography (2:1 hexane-ethyl acetate) gave 3 (48 mg, 77.8%) as a white solid. 1H NMR (CDCl$_3$) δ 7.66 (d, J = 16 Hz, 1H), 7.48 (d, J = 9 Hz, 2H), 6.93 (d, J = 9 Hz, 2H), 6.33 (d, J = 16 Hz, 1H), 4.65 (dt, J = 47.5 and 4 Hz, 2H), 4.19 (t, J = 5 Hz, 2H), 3.92 (t, J = 5 Hz, 2H), 3.86 (dt, J = 29.5 and 4 Hz, 2H), 3.80 (s, 3H); MS (EI) m/z 268 (M$^+$): HRMS calcd for C$_{13}$H$_{15}$FO$_4$, 268.1111; found, 268.1106.

(E)-3-(4-(2-(Fluoroethoxy)ethoxy)phenyl)acrylic acid (S2). Compound 3 (30 mg, 0.11 mmol) was dissolved in 1 mL MeOH, and to this solution was added dropwise a solution of NaOH (13.4 mg, 0.34 mmol) in 0.5 mL water. The reaction mixture was stirred at rt overnight. After the mixture was acidified with 0.1 N HCl to pH 2-3, it was extracted with ethyl acetate, washed with water, and then dried over Na$_2$SO$_4$. Flash column chromatography (9.5:0.5 dichloromethane-methanol) gave S2 (15 mg, 53.7%) as a white solid. 1H NMR ((CD$_3$)$_2$CO) δ 10.60 (s, 1H), 7.65 (d, J = 9 Hz, 3H), 7.03 (d, J = 9 Hz, 2H), 6.41 (d, J = 16 Hz, 1H), 4.62 (dt, J = 47.5 and 3 Hz, 2H), 4.23 (t, J = 5 Hz, 2H), 3.89 (t, J = 3.5 Hz, 2H), 3.83 (dt, J = 30.5 and 3 Hz, 2H); 19F NMR ((CD$_3$)$_2$CO) δ -223.49; MS (EI) m/z 254 (M$^+$): HRMS calcd for C$_{13}$H$_{15}$FO$_4$, 254.0954; found, 254.0950.
Figure S2. Synthesis of S2. Reagents and conditions: (a) 2-(2-chloroethoxy)ethanol, K$_2$CO$_3$, DMF, 100 °C, overnight; (b) TsCl, Et$_3$N, CH$_2$Cl$_2$, rt, overnight; (c) CsF, t-BuOH, 100 °C, overnight; (d) NaOH, MeOH-water, rt, overnight