A high-frequency phenotypic switch links bacterial virulence and environmental survival in Acinetobacter baumannii

Chui Yoke Chin1,2,3,4, Kyle A. Tipton5,8, Marjan Farokhyfar6, Eileen M. Burd3,4,7, David S. Weiss1,2,3,4,6* and Philip N. Rather4,5,6*

1Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA. 2Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA. 3Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA. 4Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA. 5Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA. 6Research Service, Atlanta VA Medical Center, Decatur, GA, USA. 7Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA. *These authors contributed equally: Chui Yoke Chin and Kyle A. Tipton.

*e-mail: david.weiss@emory.edu; prather@emory.edu
Supplementary Fig. 1. Switching frequencies between VIR-O (red) and AV-T (blue) from a 24 hour colony. (a), A single representative VIR-O colony is shown after 24 hours of growth on a 0.5X LB agar plate. At this time, three replicate VIR-O colonies were resuspended and dilutions were plated to assess the frequency of cells that switched to AV-T (b, c). After 24 hours of growth, the switching frequency of three replicate AV-T colonies to VIR-O was determined as described above (c). This was then sequentially repeated two additional times.
Supplementary Fig. 2. Switching frequencies between VIR-O (red) and AV-T (blue) from a 48 hour colony. A representative 48 hour VIR-O colony is shown. Note the high degree of AV-T sectors that have formed. Switching frequencies were determined as described in Supplemental Fig. 1 using three replicate colonies for each condition.
Supplementary Fig. 3. A highly virulent opaque (VIR-O) population is responsible for systemic infection in mice. Mice were infected intranasally with VIR-O (red) or AV-T (blue) strains (n=5/group). Presented data were pooled from two separate experiments and repeated at least 10 times. At 24 hours post-infection, (a) spleens and (b) livers were harvested and plated for colony forming unit enumeration. Dashed lines represent the limit of detection. Error bars represent geometric mean and significance was determined using a two-tailed Mann-Whitney test (***p < 0.0005).
Supplementary Fig. 4. VIR-O cells derived from AV-T colonies regain virulence in mice. Mice were infected intranasally with VIR-O (red) or AV-T (blue) strains (n=5/group). This experiment was repeated two times. At 24 hours post-infection, organs were harvested and plated for colony forming unit enumeration. Dashed lines represent the limit of detection. Error bars represent geometric mean and significance was determined using a two-tailed Mann-Whitney test (**p < 0.005).
Supplementary Fig. 5. Growth kinetics of the VIR-O and AV-T in rich or defined media. VIR-O (red) or AV-T (blue) strains were grown in (a) LB, (b) M9 supplemented with 0.2% casamino acids, and (c) M9 supplemented with 0.2% casamino acids and the iron chelator, 2,2’-dipyridyl disulfide (156 µM). Cultures were incubated at 37°C with aeration in a Biotek Synergy Mx plate reader and OD_{600} was measured each 30min for 20 hours. All values were determined using three replicates for each condition.
Supplementary Fig. 6. VIR-O is resistant to the human antimicrobial peptide LL-37. VIR-O (red) or AV-T (blue) was treated with human antimicrobial peptide LL-37 for 1 hour, and percent survival relative to VIR-O was calculated. Error bars represent standard deviation of the mean and Student’s two-tailed t-test (***p < 0.0005). The reported values represent the mean of five replicates.
Supplementary Fig. 7. Triple knockout mice lacking antimicrobials exhibit increased bacterial levels during AV-T infection. Wild-type (WT, black) or triple knockout (TKO; red) mice lacking the gp91 subunit of the NADPH oxidase, lysozyme and CRAMP were infected with AV-T (n=4 to 8/group). Presented data were pooled from three separate experiments and repeated at least 5 times. At 8 hours post-infection, lungs were harvested and plated for colony forming unit enumeration. Error bars represent geometric mean and significance was determined using a two-tailed Mann-Whitney test (**p < 0.005).
Supplementary Fig. 8. AV-T cells express higher levels of ABUW_1645. RNA was harvested from AV-T and VIR-O cultures and used for quantitative real time analysis of ABUW_1645 expression relative to the clpX gene. Error bars represent standard deviation of the mean for 3 replicates and p-values were determined using Student’s two-tailed t-test (***$p < 0.005$).
Supplementary Fig. 9. *ABUW_1645* expression correlates with phenotypic VIR-O and AV-T switch. RNA was harvested from (a) AV-T and (b) VIR-O cultures over the course of 24 hours and used for quantitative real time analysis of *ABUW_1645* expression relative to the housekeeping 16s rRNA. At each time point, cultures were plated to assess for the percentage of VIR-O and AV-T cells present. Values represent the mean of three replicates and error bars represent standard deviations.
Supplementary Fig. 10. Role of ABUW_1645 in VIR-O/AV-T switching. Wild-type and isogenic Δ1645 VIR-O and AV-T strains were serially diluted onto 0.5 X LB plates. After 20 hours of growth, well-isolated colonies (n = 6 for each) were resuspended in LB broth and serial dilutions were plated on 0.5X LB agar. The frequency of (a) VIR-O and (b) AV-T colonies was determined under stereo microscopy with oblique lighting. Error bars represent standard deviation of the mean and significance was determined using the Student’s two-tailed t-test (**p < 0.0005; ns = not significant).
Supplementary Fig. 11. OmpR, ArpB and ABUW_1645 regulate VIR-O to AV-T switching by separate pathways. (a) qRT-PCR analysis of ABUW_1645 expression in wild-type, ΔompR and an arpB::Tc mutant is shown. Values were determined using clpX as an internal control and the ΔompR and arpB::Tc values are normalized relative to wild-type. Data represents two replicates. (b) Frequency of switching in 24 hour colonies from VIR-O to AV-T is shown for six replicate colonies. For (a, b) error bars represent standard deviation of the mean.
Supplementary Fig. 12. VIR-O/1645 is sensitive to desiccation and hospital-used disinfectants. (a, b), VIR-O/vector (red), AV-T/vector (blue), VIR-O/1645 (green) or AV-T/1645 (gold) strains was treated with the indicated amounts of disinfectants: (a) BAK 0.004% and (b) CHG 0.008%, and CFU was enumerated. Values were determined using 6 replicates for (a), and four replicates for (b). (c, d), VIR-O/vector (red), AV-T/vector (blue), VIR-O/1645 (green) or AV-T/1645 (gold) strains was subjected for desiccation assays. (c), Bacteria were rehydrated and plated on day 4 of desiccation to determine viability. Values were determined using three replicates. (d), Recovered bacterial from each cells were assessed for the percentage of VIR-O and AV-T cells present (n= 3 to 5/condition). For the above experiments, error bars represent standard deviation of the mean. p-values were determined using the Student’s two-tailed t-test (*p < 0.05; **p < 0.005; ***p < 0.0005). Red and blue asterisks denote significance statistical analysis compared to VIR-O/vector and AV-T/vector, respectively.
Supplementary Fig. 13. ABUW_1645 is not required for virulence in a lung model of infection. Mice were infected intranasally with VIR-O (red) or VIR-O Δ1645 (gray) strains (n=5/group). At 24 hours post-infection, organs were harvested and plated for colony forming unit enumeration. Error bars represent geometric mean and significance was determined using a two-tailed Mann-Whitney test (ns= not significant).
Supplementary Table S1. Differentially expressed genes between the VIR-O and AV-T cells. ABUW_1645 regulated genes are highlighted in blue. Data was compiled from three biological replicates for each condition. The Fisher’s Exact Test (modified by DESeq) was used to calculate the p-values, which were adjusted for multiple-testing with the Benjamini-Hochberg method.