Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
- Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

For MRI data, ParaVision® 5 - Bruker, Germany
For calcium, AcqKnowledge Acquisition & Analysis Software, BIOPAC system (MP150 System, BIOPAC Systems, USA).

Data analysis

AFNI (Analysis of Functional NeuroImages), NIH
MATLAB R2016a

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Raw data can be provided upon email request to the corresponding author. Excel files are included for each quantitative plot included in main figures. Source data underlying Figs 2F, 4C, SC, 5E, 5G, 5H and SI are provided as a Source Data file. The data presented in the figures and other summary level data are contained within the Supplementary Files.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- [x] Life sciences
- [] Behavioural & social sciences
- [] Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

<table>
<thead>
<tr>
<th>Sample size</th>
<th>A total of 37 male Sprague–Dawley rats were used in this study. P19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data exclusions</td>
<td>For rats died during the middle of fMRI experiments or low expression of virus, the data were not included for analysis.</td>
</tr>
<tr>
<td>Replication</td>
<td>Yes. See Figure 2 and 5.</td>
</tr>
<tr>
<td>Randomization</td>
<td>N/A</td>
</tr>
<tr>
<td>Blinding</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

<table>
<thead>
<tr>
<th>n/a</th>
<th>Involved in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>[x]</td>
<td>Antibodies</td>
</tr>
<tr>
<td>[x]</td>
<td>Eukaryotic cell lines</td>
</tr>
<tr>
<td>[x]</td>
<td>Palaeontology</td>
</tr>
<tr>
<td>[x]</td>
<td>Animals and other organisms</td>
</tr>
<tr>
<td>[x]</td>
<td>Human research participants</td>
</tr>
<tr>
<td>[x]</td>
<td>Clinical data</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>n/a</th>
<th>Involved in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>[x]</td>
<td>ChIP-seq</td>
</tr>
<tr>
<td>[x]</td>
<td>Flow cytometry</td>
</tr>
<tr>
<td>[x]</td>
<td>MRI-based neuroimaging</td>
</tr>
</tbody>
</table>

Animals and other organisms

Policy information about studies involving animals: ARRIVE guidelines recommended for reporting animal research

<table>
<thead>
<tr>
<th>Laboratory animals</th>
<th>A total of 37 male Sprague–Dawley rats were used in this study. P19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild animals</td>
<td>N/A</td>
</tr>
<tr>
<td>Field-collected samples</td>
<td>N/A</td>
</tr>
<tr>
<td>Ethics oversight</td>
<td>All surgical and experimental procedures reported in this paper were approved by the local authorities (Regierungspräsidium, Tübingen Referat 35, Veterinärwesen, Leiter Dr. Maas) and were in full compliance with the guidelines of the European Community (EUVD 86/609/EEC) for the care and use of laboratory animals. P19</td>
</tr>
</tbody>
</table>

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

<table>
<thead>
<tr>
<th>Design type</th>
<th>Task, Block design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design specifications</td>
<td>P25</td>
</tr>
<tr>
<td>Behavioral performance measures</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Acquisition
- **Imaging type(s):**
 - T24-25
 - T24, 14 T
 - T24-25
- **Sequence & imaging parameters:**
 - T24-25, a whole brain scan and images for individual arterioles and venules in rat hippocampus were used.
- **Diffusion MRI:** Used
- **Preprocessing:**
 - **Preprocessing software:** AFNI, P2E
 - **Normalization:**
 - Included in the standard AFNI code.
 - **Normalization template:**
 - Included in the standard AFNI code.
 - **Noise and artifact removal:**
 - Included in the standard AFNI code.
 - **Volume tensoring:** N/A

Statistical modeling & inference
- **Model type and settings:** Included in the standard AFNI code.
- **Effect(s) tested:** N/A
- **Specify type of analysis:**
 - Whole brain
 - ROI-based
 - Both
 - Anatomical location(s): Hippocampus and barrel cortex. Based on brain atlas (Paxinos & Watson), sixth edition.
- **Statistic type for inference:** Cluster-wise (>20 voxels). Detailed p-values are included.
- **Correction:** FDR-based correction

Models & analysis
- **n/a Involved in the study:**
 - Functional and/or effective connectivity
 - Graph analysis
 - Multivariate modeling or predictive analysis