Supplementary Figures De Kesel et al., Clinical Pharmacokinetics

Why dried blood spots are an ideal tool for CYP1A2 phenotyping.

Pieter M.M. De Kesel, Willy E. Lambert and Christophe P. Stove*

Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium

*Corresponding author:

Christophe P. Stove
Laboratory of Toxicology
Department of Bioanalysis
Faculty of Pharmaceutical Sciences
Ghent University
Harelbekestraat 72
9000 Ghent
Belgium
E-mail: Christophe.Stove@UGent.be
tel.: +32 9 264 81 21
fax: +32 9 264 81 83
Supplementary Figure S1. Bland-Altman comparisons of caffeine concentrations (µg/ml) in venous whole blood and venous plasma (A), in venous DBS and venous whole blood (B), in capillary DBS and venous DBS (C) and in capillary DBS and venous plasma (D).

Supplementary Figure S2. Bland-Altman comparisons of paraxanthine concentrations (µg/ml) in venous whole blood and venous plasma (A), in venous DBS and venous whole blood (B), in capillary DBS and venous DBS (C) and in capillary DBS and venous plasma (D).

Supplementary Figure S3. Bland-Altman comparisons of paraxanthine:caffeine molar ratio in venous whole blood and venous plasma (A), in venous DBS and venous whole blood (B), in capillary DBS and venous DBS (C) and in capillary DBS and venous plasma (D).

Supplementary Figure S4. Passing-Bablok regression analysis of caffeine concentrations (µg/ml) in venous whole blood and venous plasma (A), in venous DBS and venous whole blood (B), in capillary DBS and venous DBS (C) and in capillary DBS and venous plasma (D).

Supplementary Figure S5. Passing-Bablok regression analysis of paraxanthine concentrations (µg/ml) in venous whole blood and venous plasma (A), in venous DBS and venous whole blood (B), in capillary DBS and venous DBS (C) and in capillary DBS and venous plasma (D).
Supplementary Figure S6. Passing-Bablok regression analysis of paraxanthine:caffeine molar ratios in venous whole blood and venous plasma (A), in venous DBS and venous whole blood (B), in capillary DBS and venous DBS (C) and in capillary DBS and venous plasma (D).

Supplementary Figure S7. Influence of the punch localization on the caffeine (A) and paraxanthine (B) concentrations measured in low and high QC at three Hct levels.
Supplementary Figure S1.

Bland-Altman comparisons of caffeine concentrations (µg/ml) in venous whole blood and venous plasma (a), in venous DBS and venous whole blood (b), in capillary DBS and venous DBS (c) and in capillary DBS and venous plasma (d). The mean differences and the limits of agreement are displayed, together with the 95% confidence limits (dotted lines).
Supplementary Figure S2.

Bland-Altman comparisons of paraxanthine concentrations (µg/ml) in venous whole blood and venous plasma (a), in venous DBS and venous whole blood (b), in capillary DBS and venous DBS (c) and in capillary DBS and venous plasma (d). The mean differences and the limits of agreement are displayed, together with the 95% confidence limits (dotted lines).
Supplementary Figure S3.

Bland-Altman comparisons of paraxanthine:caffeine molar ratio in venous whole blood and venous plasma (a), in venous DBS and venous whole blood (b), in capillary DBS and venous DBS (c) and in capillary DBS and venous plasma (d). The mean differences and the limits of agreement are displayed, together with the 95% confidence limits (dotted lines).
Supplementary Figure S4.

Passing-Bablok regression analysis of caffeine concentrations (µg/ml) in venous whole blood and venous plasma (a), in venous DBS and venous whole blood (b), in capillary DBS and venous DBS (c) and in capillary DBS and venous plasma (d).
Supplementary Figure S5.

Passing-Bablok regression analysis of paraxanthine concentrations (µg/ml) in venous whole blood and venous plasma (a), in venous DBS and venous whole blood (b), in capillary DBS and venous DBS (c) and in capillary DBS and venous plasma (d).
Supplementary Figure S6.

Passing-Bablok regression analysis of paraxanthine:caffeine molar ratios in venous whole blood and venous plasma (a), in venous DBS and venous whole blood (b), in capillary DBS and venous DBS (c) and in capillary DBS and venous plasma (d).
Supplementary Figure S7.

Influence of the punch localization on the caffeine (a) and paraxanthine (b) concentrations measured in low and high QCs at three Hct levels. Data are presented as percentage of the normalized samples (central punch) (n=6). Dotted lines indicate the ± 15% deviation limits.

a: caffeine

b: paraxanthine