Supplementary Material – xyz coordinates for

“Understanding the Chemistry of Cationized Triacylglycerols Using Electrospray Ionization Mass Spectrometry and Density Functional Theory Computations”,

J. Stuart Grossert1,2, Lisandra Cubero Herrera1,3, Louis Ramaley1,2 and Jeremy E. Melanson1,4

1National Research Council Canada, 1411 Oxford St., Halifax, Nova Scotia, B3H 3Z1 Canada
2Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
3Present address: Canadian Food Inspection Agency, 1992 Agency Drive, Dartmouth, Nova Scotia, B3B 1Y9, Canada
4Measurement Science and Standards, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6

Table 2S. Computed atom coordinates for structures in Figures and Schemes from Figure 2

1A -927.81395 H, 0 kJ mol⁻¹

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.574815000</td>
<td>-2.031541000</td>
<td>0.921547000</td>
</tr>
<tr>
<td>1</td>
<td>0.615783000</td>
<td>-2.996417000</td>
<td>1.429599000</td>
</tr>
<tr>
<td>5</td>
<td>0.260607000</td>
<td>-2.181866000</td>
<td>-0.108519000</td>
</tr>
<tr>
<td>6</td>
<td>-0.417194000</td>
<td>-1.103870000</td>
<td>1.673594000</td>
</tr>
<tr>
<td>8</td>
<td>1.926534000</td>
<td>-1.532742000</td>
<td>0.937747000</td>
</tr>
<tr>
<td>6</td>
<td>2.455685000</td>
<td>-1.063822000</td>
<td>-0.211832000</td>
</tr>
<tr>
<td>8</td>
<td>1.794569000</td>
<td>-0.886498000</td>
<td>-1.228027000</td>
</tr>
<tr>
<td>6</td>
<td>3.936065000</td>
<td>-0.818501000</td>
<td>-0.088816000</td>
</tr>
<tr>
<td>1</td>
<td>4.407923000</td>
<td>-1.808650000</td>
<td>-0.012186000</td>
</tr>
<tr>
<td>1</td>
<td>4.118471000</td>
<td>-0.338832000</td>
<td>0.880193000</td>
</tr>
<tr>
<td>6</td>
<td>4.525937000</td>
<td>-0.017592000</td>
<td>-0.012186000</td>
</tr>
<tr>
<td>1</td>
<td>4.359172000</td>
<td>-0.522169000</td>
<td>-2.204715000</td>
</tr>
<tr>
<td>5</td>
<td>4.083380000</td>
<td>0.981918000</td>
<td>-1.311650000</td>
</tr>
<tr>
<td>1</td>
<td>5.603780000</td>
<td>0.088388000</td>
<td>-1.107174000</td>
</tr>
<tr>
<td>3</td>
<td>0.167249000</td>
<td>0.109032000</td>
<td>-1.535741000</td>
</tr>
<tr>
<td>8</td>
<td>-1.773985000</td>
<td>-1.335320000</td>
<td>1.197735000</td>
</tr>
<tr>
<td>6</td>
<td>-2.158591000</td>
<td>-1.190629000</td>
<td>-0.086256000</td>
</tr>
<tr>
<td>8</td>
<td>-1.432348000</td>
<td>-0.776711000</td>
<td>-0.980581000</td>
</tr>
<tr>
<td>6</td>
<td>-3.593491000</td>
<td>-1.614680000</td>
<td>-0.275649000</td>
</tr>
</tbody>
</table>

1B -927.809786 H, +11 kJ mol⁻¹

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1.774158000</td>
<td>-1.825192000</td>
<td>-0.210691000</td>
</tr>
<tr>
<td>8</td>
<td>0.684724000</td>
<td>-2.381634000</td>
<td>-0.409024000</td>
</tr>
<tr>
<td>1</td>
<td>1.998218000</td>
<td>-1.049455000</td>
<td>0.937747000</td>
</tr>
<tr>
<td>6</td>
<td>0.905913000</td>
<td>-0.886498000</td>
<td>-1.228027000</td>
</tr>
<tr>
<td>1</td>
<td>0.441959000</td>
<td>-1.755196000</td>
<td>2.015847000</td>
</tr>
</tbody>
</table>
Figure 3

1H -927.755831 H, $E = + 153 \text{ kJ mol}^{-1}$

2A -1869.451701 H
Scheme 1d

1A' -927.811645 H, + 6 kJ mol⁻¹
6 -0.055263000 0.595192000 1.697028000
6 -0.293917000 -0.915165000 1.708206000
1 0.784368000 0.823010000 2.059521000
1 -0.951967000 1.097803000 2.066947000
1 -0.369264000 -1.170502000 2.769014000
3 0.291490000 0.078143000 -1.586522000
8 0.284751000 1.045042000 0.375520000
8 -1.617759000 -1.287237000 1.228810000
6 -0.783210000 -1.821406000 1.053127000
1 0.505152000 -2.080089000 0.304254000
1 0.886293000 -2.734912000 1.641037000
8 2.092000000 2.118887000 1.049543000
6 -0.246488000 2.117077000 -0.275688000
8 -0.157953000 2.054598000 -1.492016000
1 -1.979173000 -1.278687000 -0.896842000
6 -1.264379000 -0.881088000 -0.980430000
6 2.609054000 -0.804282000 -0.126140000
1 1.959706000 -0.764338000 -1.164359000
6 4.062146000 -0.431015000 0.000481000
1 4.183333000 0.139714000 0.928730000

SP13 -927.693772 H, + 316 kJ mol⁻¹
6 -0.000476000 0.332346000 1.889540000
6 -0.202748000 -1.166444000 1.661982000
1 0.818932000 0.470164000 2.598394000
1 -0.914223000 0.772058000 2.298587000
1 -0.257055000 -1.583894000 2.671311000
3 0.271008000 0.241175000 -1.855753000
8 0.381672000 1.020079000 0.682260000
6 -1.526375000 -1.500628000 1.151287000
6 0.888723000 -0.832730000 0.846966000
1 0.581382000 -2.081173000 -0.167365000
1 1.059713000 -2.903382000 1.333070000
6 2.167091000 -1.268355800 0.887724000
6 -0.378407000 1.968929000 0.149909000
-0.198042000 2.104126000 -1.151674000
-1.910748000 -1.297863000 -0.120729000
-1.215674000 -0.746054000 -0.965143000
6 2.618962000 -0.688918000 -0.240836000
8 1.938506000 -0.579082000 -1.254672000
6 4.046105000 -0.229731000 -0.103420000
1 4.141905000 0.276264000 0.864841000

1A" -927.774872 H, + 103 kJ mol⁻¹
6 -0.086385000 0.451488000 1.695237000
6 -0.589383000 -0.992030000 1.670528000
1 0.748651000 0.516451000 2.400242000
1 -0.894393000 1.102074000 2.044398000
1 -0.682349000 -1.261516000 2.720911000
3 0.106847000 0.028927000 -1.427299000

Scheme 1d

-927.811645 H, + 6 kJ mol⁻¹

-927.774872 H, + 103 kJ mol⁻¹

-927.693772 H, + 316 kJ mol⁻¹
Cat31 and EtCOOLi separated + 207 kJ mol-1

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.862658000</td>
<td>-1.692685000</td>
</tr>
<tr>
<td>6</td>
<td>0.606398000</td>
<td>-1.020810000</td>
</tr>
<tr>
<td>1</td>
<td>1.346802000</td>
<td>-1.201930000</td>
</tr>
<tr>
<td>1</td>
<td>-0.447752000</td>
<td>1.121658000</td>
</tr>
<tr>
<td>1</td>
<td>1.107643000</td>
<td>-1.188654000</td>
</tr>
<tr>
<td>6</td>
<td>-0.312741000</td>
<td>0.867128000</td>
</tr>
<tr>
<td>1</td>
<td>0.023721000</td>
<td>-1.341959000</td>
</tr>
<tr>
<td>1</td>
<td>-1.070378000</td>
<td>-2.148870000</td>
</tr>
<tr>
<td>8</td>
<td>-0.859105000</td>
<td>-0.079746000</td>
</tr>
<tr>
<td>6</td>
<td>-2.028841000</td>
<td>-0.052117000</td>
</tr>
<tr>
<td>1</td>
<td>-2.999939000</td>
<td>1.461722000</td>
</tr>
<tr>
<td>1</td>
<td>-1.893487000</td>
<td>2.062628000</td>
</tr>
</tbody>
</table>

Scheme 4b

SP41 -927.666914 H, + 386 kJ mol-1

IN41 -927.7030 H, + 291 kJ mol-1
and EtCOOH separated + 131 kJ mol⁻¹

and -927.818899 H, –13 kJ mol⁻¹

and -927.716991 H, +255 kJ mol⁻¹

and -927.188899 H, –13 kJ mol⁻¹
sn2H Li+ -275.664892 kJ mol⁻¹

3-methyl-5-pentenolactone, -383.759597 kJ mol⁻¹