Electronic Supplementary Material

Self-assembled V_2O_5 interconnected microspheres produced in a fish-water electrolyte medium as a high-performance lithium-ion-battery cathode

Md Mokhlesur Rahman1, Abu Z. Sadek1,2, Irin Sultana1, Mateti Srikanth1, Xiujuan J. Dai1, Matthew R. Field3, Dougal G. McCulloch3, Sri Balaji Ponraj1, and Ying Chen1

1 Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
2 Melbourne Centre for Nanofabrication, 151 Wellington Rd, Clayton, VIC 3168, Australia
3 School of Applied Sciences, Applied Physics, RMIT University, Melbourne, VIC 3001, Australia

Supporting information to DOI 10.1007/s12274-015-0859-y

Figure S1 As anodized VO$_2$ consists of nanoneedles-self assembled interconnected microspheres. As the time pass more and more nanoneedles keep growing towards periphery to form a bigger microsphere: (a) after 1 day; (b) after 3 days; and (c) after 6 days.

Address correspondence to Md Mokhlesur Rahman, m.rahman@deakin.edu.au; Abu Z. Sadek, a.sadek@deakin.edu.au
Figure S2 SEM images of the annealed V$_2$O$_5$ sample: (a) low magnification image of local area. Image shows that sample consists of numerous microspheres; (b) moderate magnification image of local area of (a). Microspheres are interconnected by ultralong nanobelts; (c) and (d) high resolution images taken from the local areas of (b). Images show continuous belts; (e) high magnification image of the area of (d); and (f) high magnification image take from area of (c). It is clearly seen that each belt is composed of nanofibres.

Figure S3 HRTEM images of the individual belt taken from different location: (a) image of an individual belt; and (b) lattice fringes of nanofibres taken from (a); (c) image of an individual belt; and (d) lattice fringes of nanofibres taken from (c).