Online Resources

Online Resource 1. Mean dynamics

According to Eq. 3.5.14 of Gardiner (2004), the mean dynamics of a multivariate Markov process is a system of ordinary differential equations given by an approximation that ignores correlations

\[\frac{dn_i}{dt} \sim A_i, \]

(OR.1.1)

for each species \(i \). The

\[n_i \equiv \sum_m mP\left(\tilde{N}_i = m \right) \]

(OR.1.2)

are promoted from a discrete index to a continuous variable and

\[A_i + O(\epsilon) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{|\tilde{m} - \tilde{n}| < \epsilon} d\tilde{m} \ (m_i - n_i)P\left(\tilde{N}(t + \Delta t) = \tilde{m} | \tilde{N}(t) = \tilde{n} \right), \]

(OR.1.3)

are the first-order jump moments as defined by Eq. 3.4.2 of Gardiner (2004). For the transition probabilities of Eq. 7, we find

\[P\left(\tilde{N}(t + \Delta t) = \tilde{m} | \tilde{N} = \tilde{n}(t) \right) = \sum_{j=1}^{S} \left(\delta((\tilde{m} + \tilde{e}_j) - \tilde{n})g_{j,\tilde{n}} + \delta((\tilde{m} - \tilde{e}_j) - \tilde{n})r_{j,\tilde{n}} \right) \Delta t + o(\Delta t), \]

(OR.1.4)

so

\[A_i = g_{i,\tilde{n}} - r_{i,\tilde{n}}, \]

(OR.1.5)

and Eq. OR.1.1 yields Eq. 8. For the transition probabilities of Eq. 12, we find

\[P\left(\tilde{N}(\tau + \Delta \tau) = \tilde{m} | \tilde{N} = \tilde{n}(\tau) \right) = \sum_{k=1}^{S} \sum_{j=1, j \neq k}^{S} \left(\delta((\tilde{m} - \tilde{e}_j + \tilde{e}_k) - \tilde{n})T_{j,k,\tilde{n}} \right. \]

\[+ \left. \delta((\tilde{m} - \tilde{e}_k + \tilde{e}_j) - \tilde{n})T_{k,j,\tilde{n}} \right) \Delta \tau + o(\Delta \tau), \]

(OR.1.6)
so

\[A_i = \sum_{j=1,j\neq i} (T_{j,i,n} - T_{i,j,n}) \tag{OR.1.7} \]

and Eq. OR.1.1, with \(t \to \tau \), yields Eq. 13, given \(p_i \equiv n_i/J \) and the assumption of sufficiently weak competitive asymmetry such that \(w_{i,n} << \sum_{k=1}^{S} w_{k,n}n_k \) and \(a_{ij} << \sum_{k=1}^{S} a_{ik}n_k \) for every \(i \) and \(j \). A Kramers-Moyal expansion or Van Kampen system size expansion yields mean dynamics identical to the ones derived here (see, e.g., Gardiner (2004, p. 251)).

Online Resource 2. Obtaining the Ricker model from the mean dynamics of a simple birth-death process

Eq. 8 prescribes the single-species dynamics

\[\frac{dn_1}{dt} = n_1(w_{1,0}e^{-a_{11}n_1/w_{1,0}} - d_1). \tag{OR.2.1} \]

Let \(\tau = d_1t \) and descritize the derivative to obtain

\[n_{1\tau+1} = n_{1\tau} + n_{1\tau} \left(\frac{w_{1,0}}{d_1} e^{-a_{11}n_{1\tau}/w_{1,0}} - 1 \right), \]

\[= n_{1\tau} e^{r(1-n_{1\tau}/K)}, \tag{OR.2.2} \]

where

\[r = \log(w_{1,0}/d_1), \]

\[K = \frac{w_{1,0}}{a_{11}} \log(w_{1,0}/d_1). \tag{OR.2.3} \]

Eq. OR.2.2 is the Ricker model.

Online Resource 3. The mean dynamics of a Moran model retains the zero-sum rule

Summing Eq. 13 over all species, we obtain

\[\sum_{i=1}^{S} \frac{dp_i}{d\tau} = \sum_{i=1}^{S} c_i p_i \left(1 - \sum_{j=1}^{S} p_j \right). \tag{OR.3.1} \]
If $\sum_{j=1}^S p_j(0) = 1$, then $\sum_{i=1}^S dp_i/d\tau|_{\tau=0} = 0$, which is sufficient to guarantee that $\sum_{j=1}^S p_i(\tau) = 1$ for all τ.

Online Resource 4. Dynamics of a simple Moran model

In the $S = 2$ case of Eq. 11, the stochastic dynamics can be written, without approximation, as a univariate master equation for the marginal distribution of the first species

$$\frac{dP_{n_1}}{d\tau} = g_{n_1-1} \Theta(n_1 - 1) P_{n_1-1} + r_{n_1+1} \Theta(J - (n_1 + 1)) P_{n_1+1} - (g_{n_1} \Theta(J - (n_1 + 1)) + r_{n_1} \Theta(n_1 - 1)) P_{n_1}, \quad \text{(OR.4.1)}$$

with

$$g_{n_1} \equiv T_{2,1,(n_1,n_2)} = \frac{J - n_1}{J} \left(\frac{e^{-((B_1+B_2)n_1/J-B_2-a_{12}/w_{1,0}+a_{22}/w_{2,0})n_1}}{e^{-((B_1+B_2)n_1/J-B_2-a_{12}/w_{1,0}+a_{22}/w_{2,0})n_1 + J - n_1 - 1}} \right),$$

$$r_{n_1} \equiv T_{1,2,(n_1,n_2)} = \frac{n_1}{J} \left(\frac{J - n_1}{e^{-((B_1+B_2)n_1/J-B_2+a_{21}/w_{2,0}-a_{11}/w_{1,0})n_1 - 1} + J - n_1} \right). \quad \text{(OR.4.2)}$$

This master equation also governs marginal dynamics for the asymmetric species in a nearly neutral community where all other species, labelled 2 thru S, are symmetric (see Noble et al (2011)).

To calculate the temporal evolution of *conditional* abundance probability distributions, as plotted in Fig. 1, we start by discretizing the univariate birth-death
process of Eq. OR.4.1 to obtain
\[P_{n_1, \tau + 1} = g_{n_1-1} \Theta(n_1 - 1) P_{n_1-1, \tau} + r_{n_1+1} \Theta(J - (n_1 + 1)) P_{n_1+1, \tau} \]
\[+ (1 - g_n \Theta(J - (n_1 + 1)) - r_n \Theta(n_1 - 1)) P_{n_1, \tau} \]
\[= \sum_{m=0}^{J} P_{m, \tau} W_{mn_1}, \quad \text{(OR.4.3)} \]

where
\[W = \begin{pmatrix} 1 - g_0 & g_0 & 0 & \cdots & 0 & 0 & 0 \\ r_1 & 1 - r_1 - g_1 & g_1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 - r_{J-1} - g_{J-1} & g_{J-1} & 0 \\ 0 & 0 & 0 & \cdots & r_J & 1 - r_J & 0 \end{pmatrix}. \quad \text{(OR.4.4)} \]

The unconditioned abundance probability distribution at any integer time \(\tau \), denoted \(\tilde{P}_{\tau} \), is given by
\[\tilde{P}_{\tau} = \tilde{P}_0 W^\tau. \quad \text{(OR.4.5)} \]

The abundance probability distribution conditioned against extinction and monodominance is
\[P_{cn_1, \tau} \equiv \frac{P_{n_1, \tau}}{1 - P_{0, \tau} - P_{J, \tau}}, \quad \text{(OR.4.6)} \]
for \(n_1 = 1, \ldots, J - 1 \).

Online Resource 5. Recovering non-zero-sum dynamics from zero-sum dynamics

Our general approach is to treat empty space as the \((S + 1)\)th species in a community of \(S\) species. Let \(w_{(S+1), 0} \) be the rate at which death events generate empty space and set all the \(a_{ij} \) to zero for \(i, j = S + 1 \). Given this setup, we consider the dynamics of a large–\(J\) community as \(n_{S+1} \to J \).
Starting from the master equation for the Moran model in Eq. 11, we find

\[T_{i,S+1,n} \sim \frac{n_i}{J}, \]

\[T_{S+1,i,n} \sim \frac{w_{i,n}}{w_{(S+1),0} J}, \]

(OR.5.1)

and all other transition probabilities are higher-order in \(n_i/J \) for \(i \neq S+1 \). Now let \(r \) be the overall transition rate. Rescaling \(w_{i,n} \rightarrow w_{(S+1),0} w_{i,n}/r \), setting \(\tau = r J t \), and identifying \(T_{S+1,i} \) and \(T_{i,S+1} \) with \(g_{i,n} \) and \(r_{i,n} \), respectively, we find that Eq. 11 reduces to Eq. 6 with \(d_i = r \).

Starting from the mean dynamics of the Moran model in Eq. 13, and using \(p_i = n_i/J \), we find

\[\frac{dn_i}{d\tau} \sim \frac{w_{i,n}}{w_{(S+1),0} J} - \frac{n_i}{J}, \]

(OR.5.2)

with all other terms being higher-order in \(n_i/J \) for \(i \neq S+1 \). The same rescalings as before yield Eq. 8 with \(d_i = r \).

Online Resource 6. Corrections to stability criteria of the simple Moran model for low levels of speciation and migration

In a nearly neutral metacommunity where only the first species is distinct in ecological function, parameters for the symmetric species are identical: \(w_{i,0} = w_{2,0} \) and \(a_{ij} = a_{2j} \) for all \(i > 1 \) and all \(j \). If the number of symmetric species, \(S - 1 \), is large such that terms of \(O(S) \) can be ignored in Eq. 18, then the mean dynamics for the asymmetric species can be written as

\[\frac{dp_1}{d\tau} = \frac{1}{J_M} \left((1 - \nu_1) e^{-((B_1+B_2)p_1-B_2)} - (1 - \nu_2) e^{-((B_1+B_2)p_1-B_2)} p_1 (1 - p_1) - \frac{\nu_2}{J_M} p_1 \right), \]

(OR.6.1)

where \(B_1 \) and \(B_2 \) are given by Eq. 16 with the substitution \(J \rightarrow J_M \). The stable fixed point of the nearly neutral metacommunity can be calculated perturbatively in \(\nu_1 \) and
\(\nu_2 \). At leading order, we find

\[
\begin{align*}
\nu_1^* &= \frac{B_2 - C_{\nu_1} \nu_1 - C_{\nu_2} \nu_2}{B_1 + B_2} + O(\nu_1^2, \nu_2^2, \nu_1 \nu_2), \\
\nu_{i>1}^* &= \frac{1 - \nu_i^*}{S - 1},
\end{align*}
\]

where

\[
C_{\nu_1} = 1, \quad C_{\nu_2} = \frac{B_2}{B_1}. \tag{OR.6.3}
\]

Stability requirements can be found from the linearization

\[
\frac{dp_1}{d\tau} = -\frac{1}{J_M} \frac{(B_1 + D_{\nu_1} \nu_1)(B_2 + D_{\nu_2} \nu_2)}{B_1 + B_2} (p_1 - p_1^*) + O(\nu_1^2, \nu_2^2, \nu_1 \nu_2), \tag{OR.6.4}
\]

where

\[
D_{\nu_1} = \frac{B_2^2 - B_1^2 - B_1 B_2^2}{B_2(B_1 + B_2)}, \quad D_{\nu_2} = \frac{B_2^2}{B_1^2} \left(2 - \frac{B_1 B_2}{B_1 + B_2}\right). \tag{OR.6.5}
\]

For a nearly neutral local community, the dynamics of the asymmetric species, as prescribed by Eq. 21, can be written as

\[
\frac{dp_1}{d\tau} = \frac{1}{J_M} \frac{(1 - \nu_1) e^{-(B_1 + B_2) p_1 - B_2} - (1 - \nu_2) e^{-(B_1 + B_2) p_1 - B_2} p_1 + 1 - p_1}{1 - p_1} p_1 (1 - p_1) - \frac{\nu_2}{J_M} p_1. \tag{OR.6.6}
\]

where \(B_1 \) and \(B_2 \) are given by Eq. 16 with the substitution \(J \rightarrow J_L \). The stable fixed point of the nearly neutral local community can be calculated perturbatively in \(m_1 \) and \(m_2 \). At leading order, we find

\[
\begin{align*}
\nu_1^* &= \frac{B_2 - C_{m_1} m_1 - C_{m_2} m_2}{B_1 + B_2} + O(m_1^2, m_2^2, m_1 m_2), \\
\nu_{i>1}^* &= \frac{1 - \nu_i^*}{S - 1}, \tag{OR.6.7}
\end{align*}
\]
where

\[
C_{m1} = 1 - x_1 \frac{B_1 + B_2}{B_2},
\]

\[
C_{m2} = \frac{B_2}{B_1} - x_1 \frac{B_1 + B_2}{B_1}.
\]

(OR.6.8)

Stability requirements can be found from the linearization

\[
\frac{dp_1}{d\tau} = -\frac{1}{J_L} \frac{(B_1 + D_{m1}m_1)(B_2 + D_{m2}m_2)}{B_1 + B_2} (p_1 - p_1^*) + O(m_1^2, m_2^2, m_1m_2),
\]

(OR.6.9)

where

\[
D_{m1} = \frac{1}{B_2^2(B_1 + B_2)} \left(B_2^3(1 - x_1) + 2B_1^2B_2^2x_1(1 - x_1) \\
- B_1B_2(B_1 + B_2^2)(1 - x_1)^2 - 3B_1x_1(2 - B_2x_1) \right),
\]

\[
D_{m2} = \frac{1}{B_1^2(B_1 + B_2)} \left(2B_2^3(1 - x_1) + 2B_1^2B_2^2x_1(1 - x_1) \\
+ B_1B_2^2(2 - B_2(1 - x_1)^2 - 3x_1) + B_1^3x_1(1 - B_2x_1) \right).
\]

(OR.6.10)

Online Resource 7. Calculation of extinction times in a nearly neutral metacommunity

If we assume a sufficiently large number of symmetric species such that \(O(1/S)\) terms in the master equation are negligible, marginal dynamics for the asymmetric species are governed by Eq. OR.4.1 with

\[
g_{n_1} = \frac{J_M - n_1}{J_M} \left(1 - \nu_1 \right) \frac{e^{-(B_1 + B_2)n_1/J_M - B_2 - a_{12}/w_{1,0} + a_{22}/w_{2,0})n_1 + J_M - n_1 - 1}}{e^{-(B_1 + B_2)n_1/J_M - B_2 - a_{12}/w_{1,0} + a_{22}/w_{2,0})n_1} \left(1 + \nu_2 \right),
\]

\[
r_{n_1} = \frac{n_1}{J_M} \left(1 - \nu_2 \right) \frac{J_M - n_1}{e^{-(B_1 + B_2)n_1/J_M - B_2 + a_{21}/w_{2,0} - a_{11}/w_{1,0})n_1 - 1 + J_M - n_1 + \nu_2}},
\]

(OR.7.1)

where \(B_1\) and \(B_2\) are given by Eq. 16 with the substitution \(J \to J_M\). Hubbell’s univariate metacommunity dynamics (Hubbell 2001) are included as the fully
symmetric limit. For an initial abundance of \(n_{1,0} \), the mean times to extinction, \(\tau_E \), are calculated using (Gardiner, 2004, p. 260)

\[
\tau_E = \sum_{p=0}^{n_{1,0}-1} \phi_p^M \sum_{q=p+1}^{J_M-1} \frac{1}{g_q^M \phi_q^M},
\]

(OR.7.2)

where \(\phi_0^M = 1 \) and for \(p > 0 \)

\[
\phi_p^M = \prod_{m=1}^{p} \frac{r_m^M}{g_m^M}.
\]

(OR.7.3)

Online Resource 8. Fluctuations in large local communities

In Hubbell’s theory of local communities, the expected abundance of each species at equilibrium is

\[
\lim_{\tau \to \infty} \langle N_i(\tau) \rangle = x_i J_L.
\]

(OR.8.1)

Vallade and Houchmandzadeh (2003) first calculated the variance at equilibrium

\[
\lim_{\tau \to \infty} \langle (N_i(\tau) - \langle N_i(\tau) \rangle)^2 \rangle = x_i (1 - x_i) J_L \frac{J_L + I}{1 + I},
\]

(OR.8.2)

where \(I = (J_L - 1)m/(1 - m) \) is called the “fundamental dispersal number” (Etienne and Alonso, 2005). Then, for large \(J_L \), we obtain the approximation in Eq. 24.

Online Resource 9. A stationary distribution for the asymmetric species in a nearly neutral local community with weak competitive interactions

Marginal dynamics for the asymmetric species are governed by Eq. OR.4.1 with

\[
g_{n_1} = \frac{J_L - n_1}{J_L} \left((1 - m_1) \frac{\rho_g(n_1) n_1}{\rho_g(n_1) n_1 + J_L - n_1} + m_1 \frac{\rho_g(n_1) x_1}{\rho_g(n_1) x_1 + 1 - x_1} \right),
\]

\[
r_{n_1} = \frac{n_1}{J_L} \left((1 - m_2) \frac{J_L - n_1}{\rho_r(n_1) (n_1 - 1) + J_L - n_1} + m_2 \frac{1 - x_1}{\rho_r(n_1) x_1 + 1 - x_1} \right),
\]

(OR.9.1)
where
\[\rho_g(n_1) = e^{-((B_1 + B_2)n_1/J_L - B_2 - a_{12}/w_{1,0} + a_{22}/w_{2,0})}, \]
\[\rho_r(n_1) = e^{-((B_1 + B_2)n_1/J_L - B_2 - a_{21}/w_{2,0} - a_{11}/w_{1,0})}. \]
(OR.9.2)

and \(B_1 \) and \(B_2 \) are given by Eq. 16 with the substitution \(J \to J_L \). We now assume
weak competitive interactions such that
\[\rho_g(n_1) \sim 1 - ((B_1 + B_2)n_1/J_L - B_2 - a_{12}/w_{1,0} + a_{22}/w_{2,0}) \]
\[\equiv c_g + d n_1, \]
\[\rho_r(n_1) \sim 1 - ((B_1 + B_2)n_1/J_L - B_2 + a_{21}/w_{2,0} - a_{11}/w_{1,0}) \]
\[\equiv c_r + d n_1, \]
(OR.9.3)

where
\[c_g = 1 + \log \frac{w_{1,0}}{w_{2,0}} + (J_L - 1) \frac{a_{22}w_{1,0} - a_{12}w_{2,0}}{w_{1,0}w_{2,0}}, \]
\[c_r = 1 + \log \frac{w_{1,0}}{w_{2,0}} + J_L \frac{a_{22}w_{1,0} - a_{12}w_{2,0}}{w_{1,0}w_{2,0}} + \frac{a_{11}w_{2,0} - a_{21}w_{1,0}}{w_{1,0}w_{2,0}}, \]
\[d = -\frac{w_{1,0}(a_{22} - a_{21}) + w_{2,0}(a_{11} - a_{12})}{w_{1,0}w_{2,0}}. \]
(OR.9.4)

We specialize to the case where \(a_{11} = a_{22}, a_{12} = a_{21}, \) and \(w_{1,0} = w_{2,0}, \) so that
\(c_g = c_r \equiv c. \) The stationary distribution, \(P_{n_1}^* \equiv \lim_{\tau \to \infty} P_{n_1}(\tau), \) is given by a
well-known formula
\[P_{n_1}^* = P_0 \prod_{i=0}^{n_1-1} \frac{g_i}{r_{i+1}}. \]
(OR.9.5)

After some algebra, we obtain the closed form
\[P_{n_1}^* = Z \left(\frac{J_L}{n_1} \right) \left(1 + \frac{x(c + d n_1)}{1 - x} \right) \eta^{n_1} (c/d)_{n_1} \]
\[\times \frac{B(\lambda_{a+} + n_1, \xi_{a+} - n_1)B(\lambda_{a-} + n_1, \xi_{a-} - n_1)}{B(\lambda_{a+}, \xi_{a+})B(\lambda_{a-}, \xi_{a-})} \]
\[\times \frac{B(\lambda_{b+} + n_1, \xi_{b+} - n_1)B(\lambda_{b-} + n_1, \xi_{b-} - n_1)}{B(\lambda_{b+}, \xi_{b+})B(\lambda_{b-}, \xi_{b-})}, \]
(OR.9.6)
where \((y)_z \equiv \Gamma(y + z)/\Gamma(y)\) is the Pochhammer symbol, \(B(y, z) = \Gamma(y + z)/\Gamma(y)\Gamma(z)\) is the Beta function, and

\[
Z^{-1} = \binom{6}{4}(-J_L, c/d, \lambda_{a+}, \lambda_{a-}, \lambda_{b+}, \lambda_{b-}; 1 - \xi_{a+}, 1 - \xi_{a-}, 1 - \xi_{b+}, 1 - \xi_{b-}; -\eta) \\
+ xc \binom{6}{4}(-J_L, c/d + 1, \lambda_{a+}, \lambda_{a-}, \lambda_{b+}, \lambda_{b-}; 1 - \xi_{a+}, 1 - \xi_{a-}, 1 - \xi_{b+}, 1 - \xi_{b-}; -\eta),
\]

(OR.9.7)

and

\[
\begin{align*}
\lambda_{a\pm} &= \frac{1}{2d} \left(c + d - 1 \pm \sqrt{(1 - c + d)^2 - 4d(J_L - 1)} \right), \\
\lambda_{b\pm} &= \frac{1}{2dx} \left(1 - m - x + cx \pm \sqrt{(1 - m - x + cx)^2 - 4mdx^2(J_L - 1)} \right), \\
\xi_{a\pm} &= \frac{1}{2d} \left(1 - c + 2d \pm \sqrt{(1 - c)^2 - 4d(J_L - 1)} \right), \\
\xi_{b\pm} &= \frac{1}{2d(m_2 - x)} \left(1 + (d - c)m_2 - (d - c + 1)x - (1 - m_2)dx(J_L - 1) \right. \\
&\quad \pm \sqrt{(1 - (d + c)m_2 + (d + c - 1)x - (1 - m_2)dx(J_L - 1))^2} \cdot \\
&\quad \left. \cdots - 4(J_L - 1)d(m_2 - x)(x + x(c + d)(m_2 - 1) - 1) \right), \\
\eta &= \frac{dx}{m_2 - x}.
\end{align*}
\]

(OR.9.8)

Eq. OR.9.6 is a generalized hypergeometric distribution (Kemp, 1968; Johnson et al., 1992).