A quantum - classical simulation of a multi-surface multi-mode nuclear dynamics on C$_6$H$_6^+$ incorporating degeneracy among electronic states

Subhankar Sardar and Satrajit Adhikari*
Department of Physical Chemistry,
Indian Association for the Cultivation of Science,
Jadavpur, Kolkata -700 032, INDIA

SUPPLEMENTARY MATERIAL

*Author to whom correspondence should be addressed: Fax: +91-33-2473 2805; Electronic mail: pcsa@iacs.res.in
I. THE TDDVR EQUATION OF MOTION

The expression of the TDDVR equation of motion1-14 for an amplitude, \(d_{i_1i_2...i_p,l}\) on the \(l\) th surface is,

\[
i \hbar \dot{d}_{i_1i_2...i_p,l} = \frac{1}{2} \left\{ \sum_k \dot{\hat{P}}_{ik} \sqrt{\frac{\hbar}{ImA_k}} \bar{G}_{ik} \right\} d_{i_1i_2...i_p,l} + \left\{ \sum_k \mu(\hat{Q}_k)^2 \right\} d_{i_1i_2...i_p,l} \\
+ \sum_k \left\{ \frac{hImA_k}{2\mu} \sum_{i_1'_{i_2'...i_p'}} \bar{F}_{i_1'i_2'...i_p'} d_{i_1'i_2'...i_p',l} \prod_{k' \neq k} \delta_{i_{k'}i_{k'}} \right\} \\
+ V_{ll}(i_1i_2...i_p)d_{i_1i_2...i_p,l} + \sum_{l' \neq l} V_{ll'}(i_1i_2...i_p)d_{i_1i_2...i_p,l}.
\]

(1)

The explicit form of the matrices used in quantum equation of motion are presented as follows:

\[
d_{i_1i_2...i_p,l} = c_{i_1i_2...i_p,l} \prod_{k=1}^p (A_{ik,i_k})^{\frac{1}{2}}, \tag{2a}
\]

\[
A_{ik,i_k'} = \sum_{n=0}^{N_k} \xi_n^*(x_{ik})\xi_n(x_{ik'}), \tag{2b}
\]

\[
G_{ik,i_k'} = \sum_{n=0}^{N_k-1} \xi_{n+1}^*(x_{ik})\sqrt{n+1}\xi_n(x_{ik'}) + \sum_{n=1}^{N_k} \xi_n^*(x_{ik})\sqrt{n}\xi_n(x_{ik'}), \tag{2c}
\]

\[
F_{ik,i_k'} = \sum_{n=0}^{N_k} \xi_n^*(x_{ik})(2n-1)\xi_n(x_{ik'}) - \sum_{n=0}^{N_k-2} \xi_{n+2}^*(x_{ik})\sqrt{(n+1)(n+2)}\xi_n(x_{ik'}) \\
- \sum_{n=2}^{N_k} \xi_{n-2}^*(x_{ik})\sqrt{n(n-1)}\xi_n(x_{ik'}), \tag{2d}
\]

\[
\bar{G}_{ik,i_k'} = \frac{G_{ik,i_k'}}{\sqrt{A_{ik,i_k}A_{ik,i_k'}}}, \tag{2e}
\]

\[
\bar{F}_{ik,i_k'} = \frac{F_{ik,i_k'}}{\sqrt{A_{ik,i_k}A_{ik,i_k'}}}. \tag{2f}
\]

The differential equation for quantum dynamics has the following important characteristics:
(a) The component matrices \(\{A_k\}, \{G_k\}, \{F_k\}\) of the TDDVR Hamiltonian [see (1)] are time-independent and need to be evaluated once for all; (b) Since the matrix, \(\{G_k\}\), are diagonal and associated with the “classical” variables \(\{\hat{P}_{Q_k}(t)\}\), the non-linear dynamics of these “classical” quantities affects the convergence but not the final solution of the quantum equations of motion; (c) As the off-diagonal elements of \(\{F_k\}\) matrices couple the grid-points and dominate the quantum dynamics, any non-linear “classical” propagation of their
associated parameters, \(\{ImA_k\} \), is not desirable, and hence, a time-independent \(\{ImA_k\} \) is the obvious choice. The contribution of different modes on a time-dependent amplitude \(\langle \hat{d}_{i_1i_2...i_{p'}} \rangle \) is evaluated independently, i.e., \(F_k \) matrix couple grid-points or basis functions of the \(k \)th mode only. Such multiplications along with the calculations on each surface demand an obvious parallelization of the algorithm reducing computational time remarkably and motivate us for persuading relatively large dimensional calculations.\(^{12,14}\)

Moreover, the classical path equations for the \(k \)th mode, those appear along with the quantum equation of motion, can be written as

\[
\dot{Q}_k(t) = \frac{P_{Q_k}(t)}{\mu},
\]

\[
\dot{P}_{Q_k}(t) = -\frac{dV(\{Q_k\})}{dQ_k}\big|_{Q_k(t)=Q_k^F(t)} + Q_k^F(t),
\]

where \(Q_k^F(t) \) is the quantum force for the \(k \)th mode. A rigorous expression of \(Q_k^F(t) \) is derived by using Dirac-Frenkel variational principle,\(^{15}\) i.e., by minimizing the following integral with respect to \(\dot{P}_{Q_k} \),

\[
I = \int (-i\hbar \frac{\partial \Xi^*(\{Q_k\}, t)}{\partial t} - H(\{P_{Q_k}\}, \{Q_k\})\Xi^*(\{Q_k\}, t))
\times (i\hbar \frac{\partial \Xi(\{Q_k\}, t)}{\partial t} - H(\{P_{Q_k}\}, \{Q_k\})\Xi(\{Q_k\}, t)) \prod_{k=1}^p dQ_k.
\]

The explicit expression of \(Q_k^F(t) \) thus obtained is

\[
Q_k^F(t) = \sum_l \sum_{i_1i_2...i_{p'}} c_{i_1i_2...i_{p'}}^*(t) c_{i_1i_2...i_{p-1}'}(t)
\times \left\{ \frac{2(ImA_k)^2}{\mu} \left[S^{(2)}_{ik_{i_k}'} S^{(1)*}_{ik_{i_k}} - S^{(3)}_{ik_{i_k}'} \right] - \frac{\hbar ImA_k}{\mu} \left[R_{ik_{i_k}'} S^{(1)*}_{ik_{i_k}} - T^{*}_{ik_{i_k}'} \right] \right\}
\bigg/ \left[\sum_l \sum_{i_1i_2...i_{p'}} c_{i_1i_2...i_{p'}}^*(t) c_{i_1i_2...i_{p-1}'}(t) S^{(1)*}_{ik_{i_k}'} S^{(1)}_{ik_{i_k}'} \right] + \sum_l \sum_{i_1i_2...i_{p'}} c_{i_1i_2...i_{p'}}^*(t) c_{i_1i_2...i_{p-1}'}(t) S^{(2)*}_{ik_{i_k}'} \right],
\]

(5)
The explicit form of R, $S^{(n)}$ and T matrices are

$$R_{i_k,i_k'} = \sum_p \xi_p^\ast(x_{i_k})\xi_p(x_{i_k'})2p,$$

$$S^{(n)}_{i_k,i_k'} = \sum_{pq} \xi_p(x_{i_k})\xi_q(x_{i_k'}) \int \Phi_{q,q}(Q_k,t)(Q_k - Q^c_k(t))^n \Phi_{p,q}(Q_k,t)dQ_k,$$

$$T_{i_k,i_k'} = \sum_{pq} \xi_p(x_{i_k})\xi_q^\ast(x_{i_k'})2p \int \Phi_{q,q}(Q_k,t)(Q_k - Q^c_k(t))\Phi_{p,q}(Q_k,t)dQ_k,$$

(7)

with

$$\int \Phi_{p}(Q_k,t)(Q_k - Q^c_k(t))\Phi_{q}(Q_k,t)dQ_k = \frac{1}{2} \sqrt{\frac{\hbar}{ImA_k}}(\sqrt{p+1}\delta_{p+1,q} + \sqrt{p}\delta_{p-1,q}),$$

$$\int \Phi_{p}(Q_k,t)(Q_k - Q^c_k(t))^2\Phi_{q}(Q_k,t)dQ_k = \frac{\hbar}{4ImA_k} \times \left\{ \sqrt{(p+1)(p+2)}\delta_{p+2,q} + (2p+1)\delta_{p,q} + \sqrt{p(p-1)}\delta_{p-2,q} \right\},$$

$$\int \Phi_{p}(Q_k,t)(Q_k - Q^c_k(t))^3\Phi_{q}(Q_k,t)dQ_k = \frac{1}{8} \left(\frac{\hbar}{ImA_k} \right)^{3/2} \times \left\{ \sqrt{(p+1)(p+2)(p+3)}\delta_{p+3,q} + 3(p+1)\sqrt{p+1}\delta_{p+1,q} + 3p\sqrt{p}\delta_{p-1,q} + \sqrt{p(p-1)(p-2)}\delta_{p-3,q} \right\}. $$

(8)

The matrices, R, $S^{(n)}$ and T are time-independent and need to be calculated once for all the time. It is important to note that the time-dependence of Q^F_k arises from the coefficients $\{c_{i_1i_2i_3...i_pk}(t)\}$ only.

References

