We have examined the effect of suicide gene therapy on two other cell lines: HEK 293 (human kidney) and Hep3B (human hepatoma). The gene transfer was measured by monitoring GFP expression in Fig.1S (supporting information). MTS assay in Fig.2S (supporting information) showed 5-FC dose dependent cell growth inhibition in both the cell lines transfected with pVITRO2-GFP/CD-UPRT plasmid. Measuring DNA cleavage by apoptosis ELISA in Fig.3S (supporting information) confirmed that the suicide gene therapy and the combination therapy were also effective for both the cells. Therefore, the combination therapy was not cell type specific, rather could be used in different cell lines. The effect of the combine therapy has been found similar to other known chemotherapeutic agents or anticancer drugs that kill both normal and cancer cells. As a result, we didn’t see any remarkable difference between treated cancer and normal cell types. However, targeted delivery to cancer cells could be achieved by using specific liposome and virosome to obtain high therapeutic effect. In the present study, we have described the therapeutic potential of the combination therapy in vitro. In vivo experiments will be further persuaded.
Fig. 1S GFP expression in HEK 293 and Hep 3B cells at 24h after electroporation with the pVITRO2-GFP/CDUPRT plasmid.

Fig. 2S HEK 293 and Hep 3B cells transfected with CD-UPRT were treated with different concentrations of 5-FC for 96h. At the end of the incubation, mitochondrial function was determined by the MTS reduction assay.
Fig. 3S. The BrdU labeled HEK 293 and Hep 3B cells were transfected with pVITRO2-GFP/CDUPRT expression vector and treated with 5-FC alone or 5-FC in combination with curcumin (40μgml⁻¹) for 72h. The amount of DNA fragments released to cytoplasm from nuclei due to apoptosis was measured by recording absorbance at 450nm.