Supplementary material for “Efficient Estimation for Marginal Generalized Partially Linear Single-index Models with Longitudinal Data”

Peirong Xu¹, Jun Zhang¹, Xingfang Huang¹ and Tao Wang³

¹Department of Mathematics, Southeast University, Nanjing, China
²Shen Zhen-Hong Kong Joint Research Center for Applied Statistical Sciences, Institute of Statistical Sciences at Shenzhen University, College of Mathematics and Computational Science, Shenzhen University, Shenzhen, China
³Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, USA

We first introduce some notations. Let \(v^k_l \) be the \((k, l)\)th element of \(V^{-1} \). Define

\[
W_2(u) = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m_i} E\{\Delta_{ikk}^2 v^k_i | U_{ik} = u\} f_{ik}(u),
\]

\[
Q(u, v) = \frac{1}{n} \sum_{i=1}^{n} \sum_{k \neq l \neq k, l=1} E[\Delta_{ikk} v^k_i | U_{il} = U_{il} = v] f_{ikl}(u, v),
\]

\[
B(B; u, v) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{k \neq l \neq k, l=1} E[\Delta_{ikk} v^k_i | U_{il} = u] B(U_{il}, v) f_{ikl}(u, v).
\]

Let \(\hat{\gamma}_V = (\hat{\beta}^r_V^T, \hat{\alpha}_V^T)^T \) and \(\gamma_0 = (\beta^r_0^T, \alpha_0^T)^T \). Let \(\mu_{ik}(\hat{\beta}^r_V, \hat{\alpha}_V) = g(\hat{\theta}_V(U_{ik}, \hat{\beta}^r_V, \hat{\alpha}_V) + Z_{ik}^T \tilde{\alpha}_V), \)

\[
\mu_{ik}(\beta^r_0, \alpha_0) = g(\theta_0(U_{ik}, \beta^r_0, \alpha_0) + Z_{ik}^T \alpha_0),
\]

and similar as \(\mu^{(1)}_{ik}(\beta^r_0, \alpha_0) \).

In order to establish Theorem 1, we need the following lemma first, which can be derived using similar arguments as the proof of Theorem 1 of Xu and Zhu (2012). The details are omitted here.

Lemma 0.1. Let \(\hat{\theta}_V(u, \beta^r_0, \alpha_0) \) be the estimate via (4). Under conditions C1-C3 and condition C7, we have

\[
\hat{\theta}_V(u, \beta^r_0, \alpha_0) - \theta_0(u, \beta^r_0, \alpha_0)
\]

\[
= W_2^{-1}(u) \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m_i} \mu^{(1)}_{ik}(\beta^r_0, \alpha_0) K_{ik}(U_{ik} - u) \left\{ \sum_{l=1}^{m_i} v^k_l(Y_{il} - \mu_{il}(\beta^r_0, \alpha_0)) \right\}
\]

\[
+ W_2^{-1}(u) \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m_i} \mu_{ik}(\beta^r_0, \alpha_0) Q_{1, *}(u, U_{ik}) \left\{ \sum_{l=1}^{m_i} v^k_l(Y_{il} - \mu_{il}(\beta^r_0, \alpha_0)) \right\}
\]

\[
+ W_2^{-1}(u) \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m_i} v^k_l Q_{2, *}(u, U_{ik})(Y_{ik} - \mu_{ik}(\beta^r_0, \alpha_0))
\]

\[
\frac{1}{2} b_s(u) h^2 + o_p(h^2 + (\log n/nh)^{1/2} + n^{-1/2}),
\]

where \(b_s(u) = \hat{\theta}_0^{(2)}(u) - W_2^{-1}(u) \frac{1}{n} \sum_{i=1}^{n} \sum_{k \neq l \neq k, l=1} E\{\Delta_{ikk} v^k_i | U_{il} = u\} f_{ik}(u), \)

\(Q_{1, *}(u, v) = -Q(u, v) + B(Q_{1, *}, u, v), \)

and \(Q_{2, *}(u, v) = B(Q_{2, *}, u, v). \)

Proof of Theorem 1. The theorem can be completed following the spirit of Step 2 in the proof of Theorem 1 of Xu and Zhu (2012). We just outline some key steps here.

An application of Taylor expansion yields that

\[
\hat{\mu}_{ik}(\hat{\beta}^r_V, \hat{\alpha}_V) - \mu_{ik}(\beta^r_0, \alpha_0)
\]

\[
= \mu^{(1)}_{ik}(\beta^r_0, \alpha_0)(\hat{X}_{ik}^T, \hat{Z}_{ik}^T)(\hat{\gamma}_V - \gamma_0)
\]

\[
+ \mu^{(1)}_{ik}(\beta^r_0, \alpha_0)\{\hat{\theta}_V(U_{ik}, \beta^r_0, \alpha_0) - \theta_0(U_{ik}, \beta^r_0, \alpha_0)\} + o_p(1).
\]

¹ Corresponding Author: Peirong Xu (xupeirong@seu.edu.cn).
For simplicity, let $\hat{\theta}_V(U_{ik}) = \hat{\theta}_V(U_{ik}, \beta_0^{(r)}, \alpha_0)$ and $\theta_0(U_{ik}) = \theta_0(U_{ik}, \beta_0^{(r)}, \alpha_0)$. Denote $\hat{\mu}_i(\beta_V^{(r)}, \alpha_V) = (\hat{\mu}_i(\beta_V^{(r)}, \alpha_V), \ldots, \hat{\mu}_i m(\beta_V^{(r)}, \alpha_V))^T$ and similarly as $\mu_i(\beta_0^{(r)}, \alpha_0), \mu_i(\beta_0^{(r)}, \alpha_0), \hat{\theta}_V(U_i)$ and $\theta_0(U_i)$. Let $\mathbf{1}_m$ be an m-dimensional vector of ones, and denote $a \ast b$ the elementwise product of vectors a and b. Then, putting the above equation in a matrix form and together with (5), we can derive that

$$\frac{1}{n} \sum_{i=1}^{n} A_i \sqrt{n}(\hat{\gamma} - \gamma_0) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{\partial \hat{\mu}_i(\beta_0^{(r)}, \alpha_0)}{\partial (\beta_0^{(r)}, \alpha_0)^T} V_i^{-1} [Y_i - \mu_i(\beta_0^{(r)}, \alpha_0)] - \frac{1}{\sqrt{n}} \sum_{i=1}^{n} B_i + o_p(1_K),$$

where $K = p - 1 + q$, and

$$A_i = \{\mu_i(\beta_0^{(r)}, \alpha_0) * (\hat{X_i}, \hat{Z_i})\}^T V_i^{-1} \{\mu_i(\beta_0^{(r)}, \alpha_0) * (\hat{X_i}, \hat{Z_i})\},$$

$$B_i = \{\mu_i(\beta_0^{(r)}, \alpha_0) * (\hat{X_i}, \hat{Z_i})\}^T V_i^{-1} [\mu_i(\beta_0^{(r)}, \alpha_0) * (\hat{\theta}_V(U_i) - \theta_0(U_i))].$$

Consequently, by Lemma 0.1, we have

$$\sqrt{n}(\hat{\gamma} - \gamma_0) = [A(V)]^{-1}(S_n - T_n),$$

where

$$S_n = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (\hat{X_i}, \hat{Z_i})^T D_{ii} V_i^{-1} \{Y_i - \mu_i(\beta_0^{(r)}, \alpha_0)\},$$

$$T_n = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} B_i = (T_{1n} + T_{2n})[1 + o_p(1_K)],$$

where

$$T_{1n} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \sum_{k=1}^{m} \sum_{l=1}^{m_i} \mu_i(\beta_0^{(r)}, \alpha_0) v_{il}^{(1)}(\hat{X}_{ik}, \hat{Z}_{ik})[2^{-1} h^2 \{b_*(U_{il}) + h h_{11}(U_{il}) + O_p(h^2)]],$$

$$T_{2n} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \sum_{k=1}^{m} \sum_{l=1}^{m_i} \mu_i(\beta_0^{(r)}, \alpha_0) v_{il}^{(1)}(\hat{X}_{ik}, \hat{Z}_{ik}) \times \left[W_2^{-1}(U_{il}) \sum_{s=1}^{m} \sum_{t=1}^{m} \mu_{st}(\beta_0^{(r)}, \alpha_0) \left\{ K_h (U_{st} - U_{il}) \sum_{d=1}^{m_i} v_{s}^{(1)} (Y_{sd} - \mu_{sd}(\beta_0^{(r)}, \alpha_0)) Q_{1,s}(U_{il}, U_{st}) \right\} \right].$$

with b_{s+1} being the next order term in a higher order bias expansion of $\hat{\theta}_V$. Using similar arguments as Step 2 in the proof of Theorem 1 of Xu and Zhu (2012), we can conclude that $T_{1n} = o_p(1_K)$ and $T_{2n} = o_p(1_K)$ as $n \to \infty$, $h \to 0$ such that $nh^8 \to 0$ and $nh/\log(1/h) \to \infty$, which results in $T_n = o_p(1_K)$. Consequently, based on (0.1), we have

$$\sqrt{n}(\hat{\gamma} - \gamma_0) = [A(V)]^{-1} S_n [1 + o_p(1_K)] \overset{L}{\to} N(0, [A(V)]^{-1} B(V, \Sigma) [A(V)]^{-1}),$$

which finishes the proof.

Proof of Lemma 1. To prove Lemma 1, the following result in Huang et al. (2007) will be needed. We reproduce it here for the sake of readability.
Lemma 0.2. For the restricted moment model

\[Y_i = \mu(X_i, \beta) + \epsilon_i, \quad E(\epsilon_i | X_i) = 0, \]

where \(\mu(\cdot) \) is a known function, \(Y_i = (Y_{i1}, \ldots, Y_{im})^T \), \(X_i \) is the corresponding covariate matrix, and \(\epsilon_i = (\epsilon_{i1}, \ldots, \epsilon_{im})^T \). The semiparametric efficient score for \(\beta \) is

\[S_{\text{seff}} = \sum_{i=1}^{n} \left(\frac{\partial \mu(X_i, \beta)}{\partial \beta} \right)^T \left(E(\epsilon_i \epsilon_i^T | X_i) \right)^{-1} \epsilon_i. \]

Now let \(\mathcal{P} \) be the model specified by (1). We define the following submodels:

\[\mathcal{P}_1 = \{ \text{Model } \mathcal{P} \text{ with only } \gamma_0 \text{ unknown} \}, \]
\[\mathcal{P}_2 = \{ \text{Model } \mathcal{P} \text{ with only } \theta_0(\cdot) \text{ unknown} \}, \]
\[\mathcal{P}_3 = \{ \text{Model } \mathcal{P} \text{ with both } \gamma_0 \text{ and } \theta_0(\cdot) \text{ unknown} \}. \]

Denote by \(\mathcal{P}_1, \mathcal{P}_2, \) and \(\mathcal{P}_3 \) the tangent spaces corresponding to these submodels. Let \(S_\gamma \) be the score function for \(\gamma_0 \) in Model \(\mathcal{P}_1 \). Then, the semiparametric efficient score for \(\gamma_0 \) is defined as

\[S_{\text{seff}} = S_\gamma - \Pi(S_\gamma | \mathcal{P}_3) \]
\[= S_\gamma - \Pi(S_\gamma | \mathcal{P}_3) - \Pi\{S_\gamma | \Pi(\mathcal{P}_2 | \mathcal{P}_3)\}, \]

according to Definition 2 in Section 4.4 of Tsiatis (2006). Let \(\mathcal{P} = \{ \text{Model } \mathcal{P} \text{ with } \theta_0(\cdot) \text{ known} \}. \) Then, the semiparametric efficient score for \(\gamma_0 \) in Model \(\mathcal{P} \) is

\[S_\gamma - \Pi(S_\gamma | \mathcal{P}_3). \]

According to Lemma 0.2, we have

\[S_\gamma - \Pi(S_\gamma | \mathcal{P}_3) = \sum_{i=1}^{n} \left(X_i^*, Z_i \right)^T \Delta_{i0} \Sigma_i^{-1} \{ Y_i - g(\theta_0(X_i, \beta_0) + Z_0 \alpha_0) \}. \]

On the other hand, by considering parametric submodels of \(\mathcal{P}_2 \) with \(\theta_0(\cdot) \) replaced by \(\theta(\xi, \cdot) \) and applying Lemma 0.2, we can show that

\[\Pi(\mathcal{P}_2 | \mathcal{P}_3) = \left\{ \sum_{i=1}^{n} \left[\varphi(X_i, \beta_0) \right]^T \Delta_{i0} \Sigma_i^{-1} \{ Y_i - g(\theta_0(X_i, \beta_0) + Z_0 \alpha_0) \} : \varphi(\cdot) \in \mathcal{L}_2(\mathcal{U}) \right\}. \]

Consequently,

\[S_{\text{seff}} = \sum_{i=1}^{n} E[(\tilde{X}_i^*, \tilde{Z}_i)^T \Delta_{i0} \Sigma_i^{-1} \{ Y_i - g(\theta_0(X_i, \beta_0) + Z_0 \alpha_0) \}], \]

where \((\varphi_\beta^*(X_i, \beta_0), \varphi_\alpha^*(X_i, \beta_0)) \) satisfies the requirement that \(S_{\text{seff}} \) is orthogonal to any member in \(\Pi(\mathcal{P}_2 | \mathcal{P}_3) \).

That is, \(\varphi_\beta^*(X_i, \beta_0) = (\varphi_\beta^{*1}(X_i, \beta_0), \ldots, \varphi_\beta^{*p-1}(X_i, \beta_0)) \) with \(\varphi_\beta^{*p}(\cdot) \in \mathcal{L}_2(\mathcal{U}) \) needs to satisfy

\[\sum_{i=1}^{n} E[(x_{ij} - \varphi_\beta^{*j}(X_i, \beta_0))^T \Delta_{i0} \Sigma_i^{-1} \Delta_{i0} \varphi(X_i, \beta_0)] = 0, \quad \forall \varphi(\cdot) \in \mathcal{L}_2(\mathcal{U}), \]

and \(\varphi_\alpha^*(X_i, \beta_0) = (\varphi_\alpha^{*1}(X_i, \beta_0), \ldots, \varphi_\alpha^{*q}(X_i, \beta_0)) \) with \(\varphi_\alpha^{*j}(\cdot) \in \mathcal{L}_2(\mathcal{U}) \) satisfies

\[\sum_{i=1}^{n} E[(z_{ij} - \varphi_\alpha^{*j}(X_i, \beta_0))^T \Delta_{i0} \Sigma_i^{-1} \Delta_{i0} \varphi(X_i, \beta_0)] = 0, \quad \forall \varphi(\cdot) \in \mathcal{L}_2(\mathcal{U}). \]
Proof of Theorem 2. We first show that $\varphi_\beta (u) = \varphi_\beta ^* (u)$. Let $\varphi_\beta (u) = (\varphi_\beta (u), \ldots , \varphi_{\beta_{p-1}} (u))^T$. It is sufficient to show that $\varphi_\beta (u)$ satisfies the Fredholm integral equation of the second kind (6).

For any given $\beta (r)$ and α, using (4) with $V_i = \Sigma_i$, we have

$$0 = 1 \sum_{i=1}^{n} \sum_{k=1}^{m_i} \sigma_i^{kk} K_h (U_{ik} - u) \mu^{(1)}_i (\beta (r), \alpha) \{ Y_{ik} - g (Z_{ik}^T \alpha + \tilde{\theta}_\Sigma (u, \beta (r), \alpha) + \tilde{b}_\Sigma (u, \beta (r), \alpha) (U_{ik} - u)) \} + \frac{1}{n} \sum_{i=1}^{n} \sum_{k \neq l, k, l = 1}^{m_i} \sigma_i^{kl} K_h (U_{ik} - u) \mu^{(1)}_i (\beta (r), \alpha) \times \{ Y_{il} - g (Z_{il}^T \alpha + \tilde{\theta}_\Sigma (U_{il}, \beta (r), \alpha)) \},$$

where $\mu^{(1)}_i (\beta (r), \alpha)$ is the first derivative of the function $g(\cdot)$ evaluated at $Z_{ik}^T \alpha + \tilde{\theta}_\Sigma (u, \beta (r), \alpha) + \tilde{b}_\Sigma (u, \beta (r), \alpha) (U_{ik} - u)$. Let $K_h^{(1)} (u) = h^{-1} K^{(1)} (u/h)$, where $K^{(1)} (\cdot)$ is the first derivative of the function $K(\cdot)$. Then, taking derivatives with respect to $\beta (r)$, we have

$$0 = T_1 + T_2 + T_3 - T_4,$$

where

$$T_1 = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m_i} \sigma_i^{kk} h^{-1} K_h^{(1)} (U_{ik} - u) J_{\beta (r)}^T X_i \mu^{(2)}_i (\beta (r), \alpha) \{ Y_{ik} - g (Z_{ik}^T \alpha + \tilde{\theta}_\Sigma (U_{il}, \beta (r), \alpha)) \};$$

$$T_2 = \left\{ \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m_i} K_h (U_{ik} - u) \mu^{(2)}_i (\beta (r), \alpha) \left[-\varphi_\beta (u, \beta (r), \alpha) + \frac{\partial \tilde{\theta}_\Sigma (u, \beta (r), \alpha)}{\partial \beta (r)} (U_{ik} - u) \right] \right\} + \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m_i} K_h (U_{ik} - u) \mu^{(2)}_i (\beta (r), \alpha) \tilde{b}_\Sigma (u, \beta (r), \alpha) J_{\beta (r)}^T X_i \times \left\{ Y_{ik} - g (Z_{ik}^T \alpha + \tilde{\theta}_\Sigma (U_{il}, \beta (r), \alpha)) \right\} + \sum_{k \neq l, k, l = 1}^{m_i} \sigma_i^{kl} \left\{ Y_{il} - g (Z_{il}^T \alpha + \tilde{\theta}_\Sigma (U_{il}, \beta (r), \alpha)) \right\};$$

$$T_3 = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m_i} \sigma_i^{kk} K_h (U_{ik} - u) \mu^{(1)}_i (\beta (r), \alpha) \{ Y_{ik} - g (Z_{ik}^T \alpha + \tilde{\theta}_\Sigma (U_{il}, \beta (r), \alpha)) \} + \tilde{\varphi}_\beta (u, \beta (r), \alpha) + \frac{\partial \tilde{\theta}_\Sigma (u, \beta (r), \alpha)}{\partial \beta (r)} (U_{ik} - u) \times \left\{ Y_{il} - g (Z_{il}^T \alpha + \tilde{\theta}_\Sigma (U_{il}, \beta (r), \alpha)) \right\};$$

$$T_4 = \frac{1}{n} \sum_{i=1}^{n} \sum_{k \neq l, k, l = 1}^{m_i} \sigma_i^{kl} K_h (U_{ik} - u) \mu^{(1)}_i (\beta (r), \alpha) g^{(1)} (Z_{ik}^T \alpha + \tilde{\theta}_\Sigma (U_{il}, \beta (r), \alpha)) \times \left\{ Y_{il} - g (Z_{il}^T \alpha + \tilde{\theta}_\Sigma (U_{il}, \beta (r), \alpha)) \right\}.$$

We first consider T_1. Denote by T_{11} the first term of T_1. Let $a_{ik} = \sigma_i^{kk} h^{-1} K_h^{(1)} (U_{ik} - u) J_{\beta (r)}^T X_i$, $e_{ik} = Y_{ik} - g (\theta_0 (X_{ik}^T \beta_0) + Z_{ik}^T \alpha_0)$, and $\tilde{\mu}_{ik} = g (Z_{ik}^T \alpha + \tilde{\theta}_\Sigma (u, \beta (r), \alpha) + \tilde{b}_\Sigma (u, \beta (r), \alpha) (U_{ik} - u))$. Then, we
decompose T_{11} as follows:

$$
T_{11} = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m} a_{ik} g^{(1)}(\theta_0(X^T_{ik}\beta_0) + z_{ik}^{T}\alpha_0)\epsilon_{ik} \\
+ \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m} a_{ik} \epsilon_{ik} \left\{ \mu^{(1)}_{ik}(\beta^{(r)}, \alpha) - g^{(1)}(\theta_0(X^T_{ik}\beta_0) + z_{ik}^{T}\alpha_0) \right\} \\
+ \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m} a_{ik} g^{(1)}(\theta_0(X^T_{ik}\beta_0) + z_{ik}^{T}\alpha_0) \left\{ g(\theta_0(X^T_{ik}\beta_0) + z_{ik}^{T}\alpha_0) - \tilde{\mu}_{ik} \right\} \\
+ \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m} a_{ik} \left\{ \mu^{(1)}_{ik}(\beta^{(r)}, \alpha) - g^{(1)}(\theta_0(X^T_{ik}\beta_0) + z_{ik}^{T}\alpha_0) \right\} \\
\times \left\{ g(\theta_0(X^T_{ik}\beta_0) + z_{ik}^{T}\alpha_0) - \tilde{\mu}_{ik} \right\} \\
\triangleq T_{111} + T_{112} + T_{113} + T_{114}.
$$

According to condition C3 and using the similar arguments to the proof of Theorem 1 in Xu and Zhu (2012), we have $T_{11l} = o_p(1)$ for $l = 1, 2, 3, 4$. Similarly, we can show that the second term of T_1 is also of order $o_p(1)$, which implies that $T_1 = o_p(1)$. Moreover, under conditions C1-C5, we know that $T_2 = o_p(1)$, and

$$
\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m} \sigma_{i}^{kk} K_h(U_{ik} - u) \{ \mu^{(1)}_{ik}(\beta^{(r)}, \alpha) \}^2 2 \Delta_{\Sigma}(u, \beta^{(r)}, \alpha) \left(\frac{\partial}{\partial \beta^{(r)}} \right) (U_{ik} - u) = o_p(1).
$$

In addition, it is straightforward to show that

$$
\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m} \sigma_{i}^{kk} K_h(U_{ik} - u) \{ \mu^{(1)}_{ik}(\beta^{(r)}, \alpha) \}^2 \Delta_{\beta^{(r)}}^2 = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m} E \left\{ \sigma_{i}^{kk} \Delta_{\beta^{(r)}}^2 | U_{ik} = u \right\} f_{ik}(u) \{ 1 + o_p(1) \},
$$

$$
= \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m} \sigma_{i}^{kk} K_h(U_{ik} - u) \{ \mu^{(1)}_{ik}(\beta^{(r)}, \alpha) \}^2 J_{\beta^{(r)}}^{T} X_{ik}
$$

$$
= \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m} E \left\{ \sigma_{i}^{kk} \Delta_{\beta^{(r)}}^2 J_{\beta^{(r)}}^{T} X_{ik} | U_{ik} = u \right\} f_{ik}(u) \{ 1 + o_p(1) \},
$$

$$
= \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m} \sigma_{i}^{kk} K_h(U_{ik} - u) \{ \mu^{(1)}_{ik}(\beta^{(r)}, \alpha) \} g^{(1)}_{id} \Delta_{\beta^{(r)}}^{(1)} (U_{il}, \beta^{(r)}, \alpha) J_{\beta^{(r)}}^{T} X_{il}
$$

where $g^{(1)}_{id} = g^{(1)}(Z_{il}^{T} \alpha + \tilde{\beta}_{\Sigma}(U_{il}, \beta^{(r)}, \alpha))$ for short. On the other hand, we know that

$$
\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m} \sigma_{i}^{kk} K_h(U_{ik} - u) \{ \mu^{(1)}_{ik}(\beta^{(r)}, \alpha) \} g^{(1)}_{il} \tilde{\beta}_{\beta}(U_{il}, \beta^{(r)}, \alpha)
$$

$$
= \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m} \int E \left\{ \sigma_{i}^{kk} \Delta_{\beta^{(r)}}^2 | U_{ik} = u \right\} \tilde{\beta}_{\beta}(U_{il}, \beta^{(r)}, \alpha) f_{ik}(U_{il}, u) dU_{il} \{ 1 + o_p(1) \}.
$$

5
Therefore, combing the above results, we conclude that

\[
\alpha_p(1) = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m_i} E \left\{ \sigma^2_{ik} \Delta_{ik}^2 u_{ik} = u \right\} f_{ik}(u) \hat{\varphi}_\beta(U_{it}, \beta^{(r)}, \alpha)
\]

\[
- \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m_i} E \left\{ \sigma^2_{ik} \Delta_{ik}^2 J_{(r)}^T \cdot X_{ik} | U_{ik} = u \right\} f_{ik}(u) \hat{\theta}_0(u) \hat{\theta}_0'(u) (u) \alpha
\]

\[
- \frac{1}{n} \sum_{i=1}^{n} \sum_{k\neq l, k,l=1}^{m_i} E \left\{ \sigma_{i}^{k} \Delta_{ikk} \Delta_{il} \hat{\theta}_0(U_{il}) J_{(r)}^T \cdot X_{ik} | U_{ik} = u \right\} f_{ik}(u)
\]

\[
+ \frac{1}{n} \sum_{i=1}^{n} \sum_{k\neq l, k,l=1}^{m_i} \int E \left\{ \sigma_{i}^{k} \Delta_{ikk} \Delta_{il} | U_{ik} = u \right\} \varphi_\beta(U_{it}, \beta^{(r)}, \alpha) f_{ilik}(U_{it}, u) dU_{it},
\]

uniformly on \(u \). Since \(\varphi_\beta(U_{it}, \beta^{(r)}, \alpha) \to \varphi_\beta(u) \) as \(n \to \infty \) uniformly on \(u \), \(\varphi_\beta(u) \) satisfies

\[
\sum_{i=1}^{n} \sum_{k=1}^{m_i} E \left\{ \sigma^2_{ik} \Delta_{ik}^2 u_{ik} = u \right\} f_{ik}(u) \varphi_\beta(u)
\]

\[
= \sum_{i=1}^{n} \sum_{k=1}^{m_i} E \left\{ \sigma^2_{ik} \Delta_{ik}^2 J_{(r)}^T \cdot X_{ik} | U_{ik} = u \right\} f_{ik}(u) \hat{\theta}_0(u) \hat{\theta}_0'(u) (u)
\]

\[
- \sum_{i=1}^{n} \sum_{k\neq l, k,l=1}^{m_i} E \left\{ \sigma_{i}^{k} \Delta_{ikk} \Delta_{il} \hat{\theta}_0(U_{il}) J_{(r)}^T \cdot X_{ik} | U_{ik} = u \right\} f_{ik}(u)
\]

\[
- \sum_{i=1}^{n} \sum_{k\neq l, k,l=1}^{m_i} \int E \left\{ \sigma_{i}^{k} \Delta_{ikk} \Delta_{il} | U_{ik} = u \right\} \varphi_\beta(U_{it}, \beta^{(r)}, \alpha) f_{ilik}(U_{it}, u) dU_{it}
\]

which demonstrates that \(\varphi_\beta(u) \) satisfies (6) for \(j = 1, \ldots, p - 1 \). Similar arguments can be used to prove \(\varphi_\alpha(u) \) satisfies (7), where \(\varphi_\alpha(u) = (\varphi_{\alpha_1}(u), \ldots, \varphi_{\alpha_q}(u))^T \).

Proof of Corollary 2. When \(V_i = \Sigma_i \) for \(i = 1, \ldots, n \), by Theorem 2, we know that \(A(\Sigma) = I_{\text{self}} \). Therefore, by Theorem 1, we have

\[
\sqrt{n} \left(\frac{\hat{\beta}_{(r)} - \beta_{(r)}}{\hat{\alpha}_{0} - \alpha_{0}} \right) \to N(0, I_{\text{self}}^{-1}),
\]

which finishes the proof.

References

