Supplementary information

Involvement of Extracellular signal-regulated kinase (ERK1/2)-p53-p21 axis in mediating neural stem/progenitor cell cycle arrest in comorbid HIV-Drug abuse exposure

Journal of Neuroimmune Pharmacology

1Shaily Malik, MS., 1Rinki Saha, MS., and *1Pankaj Seth, Ph.D.

1Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana - 122051, INDIA.

^Present address: Department of Neurobiology and Ethology, University of Haifa, Haifa, Israel.

*Corresponding Author:

Pankaj Seth, Ph.D

Email: pseth@nbrc.ac.in
Fig. S1 Dose response study of morphine on human neural precursor cells

a) To assess the effect of chronic exposure of morphine, NPCs were cultured in PDL coated 96-well plates at a density of 8×10^3 cells/well and treated with 100nM-100μM morphine for 6 days and MTT assay was performed. Data represents mean ± SD from 5 independent experiments. *-p<0.05; **-p<0.005.
Fig. S2 Temporal changes in the proliferation index of human neural precursor cells with HIV-Tat and morphine

a) Human NPCs were treated with 10nM Tat and/or 100nM morphine for a period of 1, 3, 6 and 9 days, and actively proliferating sub-populations of NPCs were assessed by immunostaining for Ki67. Nuclei were labeled with DAPI. %Ki67+ cells/ DAPI were calculated and considered as an index for cell proliferation. Graph represents quantitative assessment of NPCs treated with Tat and/or morphine for specified durations. Data represents mean ± SD from 3 independent experiments. *-p<0.05; **-p<0.005.