I. Derivation of high-dynamic pulse-shaped signal model

The modeling process for high-dynamics pulse-shaped signals can be interpreted with a hybrid analog/digital model, as depicted in Figure 1.

The continuous-time baseband data pulse sequence signal \(x(t) \) obtained after digital/pulse sequence conversion can be expressed as

\[
x(t) = \sum_{n=-\infty}^{\infty} x[n] \delta(t-nT_0),
\]

where \(x[n] \) is the digital data sequence and \(T_0 \) is the fixed data cycle period. The PSF filters \(x(t) \) and outputs a non-dynamic pulse-shaped signal \(y(t) \):

\[
y(t) = \sum_{n=-\infty}^{\infty} x[n] h_{PSF}(t-nT_0).
\]

The channel module is then used to simulate the transmission delay characteristics in the high-speed environment. Let the channel module frequency response be \(H_c(j\Omega) \), which can be written as

\[
H_c(j\Omega) = e^{-j\Omega D},
\]
where parameter D is the transmission delay. Therefore, the continuous-time high-dynamics pulse-shaped signal is obtained as

$$y_d(t) = \sum_{n=-\infty}^{\infty} x[n] h_{psf}(t - D - nT_0). \quad (4)$$

The discrete-time high-dynamics pulse-shaped sequence resulting from sampling the continuous-time signal in (4) at time instants $t = kT_s$ ($T_s = 1/f_s$ is the sample period) is given by

$$y_d[k] = \sum_{n=-\infty}^{\infty} x[n] h_{psf}(kT_s - D - nT_0), \quad (5)$$

where $y_d[k] = y_d(kT_s)$.

According to the interpolation theory, basepoint index m_k and fractional interval μ_k are defined as

$$m_k = \left\lfloor \frac{kT_s - D}{T_0} \right\rfloor, \quad \mu_k = \frac{kT_s - D}{T_0} - m_k, \quad (6)$$

where $\left\lfloor x \right\rfloor$ is the floor operator. Equation (5) can then be rewritten as

$$y_d[k] = \sum_{i=-\infty}^{\infty} x[m_k - i] h_{psf}\left[(i + \mu_k)T_0 \right], \quad (7)$$

where $i = m_k - n$.

II. Derivation of parameters m_k and μ_k

Transmission delay D can be defined as

$$D = \frac{d(t)}{c}, \quad (8)$$

where c is the speed of light, and $d(t)$ is the signal propagation path length at received time t,

expressed as

$$d(t) = d_0 + \int_0^t v(\tau)d\tau, \quad (9)$$

where d_0 is the initial distance at $t = 0$, and $v(t)$ is the receiver speed. We assume here that the
transmitter is stationary. In terms of the Doppler effect, the Doppler data rate is defined as

\[R_d(t) = -\frac{v(t)}{c}R_0, \]

where \(R_0 = 1/T_0 \) is the transmission data rate. Substituting (10) into (9) gives

\[d(t) = d_0 - \frac{c}{R_0} \int_0^t R_d(\tau) d\tau, \]

whose corresponding discrete expression is

\[d(kT_i) = d_0 - \frac{c}{R_0} \sum_{n=0}^{k} R_d[n]T_i. \]

In (12), \(R_d[n] = R_d(nT_i) \) is the discrete Doppler data rate. Substituting (12) and (8) into (6) yields

\[m_k = \left[\sum_{n=0}^{k} (R_0 + R_d[n])T_i - \frac{d_k}{c}R_0 \right], \]

\[\mu_k = \sum_{n=0}^{k} (R_0 + R_d[n])T_i - \frac{d_k}{c}R_0 - m_k. \]

III. Derivation of equation \(B = HA \)

The impulse response segments are approximated by \(N \)-order polynomials:

\[h(yi + i_0, \mu'_{i_0}) = P(yi + i_0, \mu'_{i_0}) = \sum_{n=0}^{N} b_n(yi + i_0)\mu'_{i_0}^n, \]

where \(P(yi + i_0, \mu'_{i_0}) \) are \(N \)-order polynomials, \(b_n(yi + i_0) \) are the polynomial coefficients and are also the coefficients of traditional Farrow structure. We now define the matrix \(B \) of polynomial coefficients as

\[B = \begin{bmatrix} b_0(-yI) & b_1(-yI) & \cdots & b_N(-yI) \\ b_0(-yI+1) & b_1(-yI+1) & \cdots & b_N(-yI+1) \\ \vdots & \vdots & \ddots & \vdots \\ b_0(yI-1) & b_1(yI-1) & \cdots & b_N(yI-1) \end{bmatrix}. \]

According to Lagrange interpolation theory, approximating the impulse response segments with \(N \)-order polynomials requires \(N + 1 \) basepoints at each segment. For simplicity, we sample each impulse response segment evenly; the sample points must include the segment end points, to ensure
continuity of the piecewise polynomial. The sample point coordinates are \((nT/N, h_n(yi + i'_n)) \), where
\[
h_n(yi + i'_n) = h(yi + i'_n, n/N), \quad n = 0, 1, \ldots, N,\]
is the sampled sequence. We now define the sample matrix \(H \) as
\[
H = \begin{pmatrix}
h_0(-yI) & h_1(-yI) & \cdots & h_N(-yI) \\
h_0(-yI + 1) & h_1(-yI + 1) & \cdots & h_N(-yI + 1) \\
\vdots & \vdots & \ddots & \vdots \\
h_0(yI - 1) & h_1(yI - 1) & \cdots & h_N(yI - 1)
\end{pmatrix}
\] (16)

Following Lagrange interpolation theory, the \(N \)-order polynomials \(P(yi + i'_n, \mu'_n) \) can also be written as
\[
P(yi + i'_n, \mu'_n) = \sum_{n=0}^{N} h_n(yi + i'_n) L_n(\mu'_n),
\] (17)
where \(L_n(\mu'_n) \) is defined as
\[
L_n(\mu'_n) = \prod_{j=0, j\neq n}^{N} \frac{\mu'_n - \frac{j}{N}}{\frac{n}{N} - \frac{j}{N}} = \sum_{m=0}^{N} a_n(m) \mu'^{n}.
\] (18)
The coefficients of polynomial \(L_n(\mu'_n) \) in (18) are defined by matrix \(A \) as
\[
A = [a_n(m)]^T,
\] (19)
where \(m \) is the row index, \(n \) is the column index. Table I lists the values of matrix \(A \) when \(N = 1, N = 2, \) and \(N = 3 \).

We define matrix \(L \) to denote polynomial \(L_n(\mu'_n) \)
\[
L = \begin{bmatrix}
L_0(\mu'_n) & L_1(\mu'_n) & \cdots & L_N(\mu'_n)
\end{bmatrix}^T.
\] (20)
and define matrix \(U \) to denote the variable of the polynomial.
\[
U = \begin{bmatrix}
1 & \mu'_1 & \cdots & \mu'^{N}
\end{bmatrix}^T.
\] (21)
Thus, (18) can be rewritten as
\[
L = AU.
\] (22)
Substituting (17) into (14) yields
\[\mathbf{HL} = \mathbf{BU}. \quad (23) \]

Thus,

\[\mathbf{B} = \mathbf{HA}. \quad (24) \]

Table I Matrix \(\mathbf{A} \) values

<table>
<thead>
<tr>
<th>Polynomial order</th>
<th>Value</th>
</tr>
</thead>
</table>
| \(N = 1 \) | \[
\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}
\] |
| \(N = 2 \) | \[
\begin{bmatrix} 1 & -3 & 2 \\ 0 & 4 & -4 \\ 0 & -1 & 2 \end{bmatrix}
\] |
| \(N = 3 \) | \[
\begin{bmatrix} 1 & -\frac{11}{2} & 9 & \frac{9}{2} \\ 0 & 9 & \frac{45}{2} & \frac{27}{2} \\ 0 & -\frac{9}{2} & 18 & \frac{27}{2} \\ 0 & 1 & -\frac{9}{2} & \frac{9}{2} \end{bmatrix}
\] |

IV. Comparison of complexities

The complexities of the Farrow structure and its modifications are listed in Table II.

Table II Complexities of the Farrow structure and its modifications

<table>
<thead>
<tr>
<th>Structure</th>
<th>Number of multipliers</th>
<th>Number of adders</th>
<th>Number of coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Farrow structure</td>
<td>((2I + 1)(N + 1) - 1)</td>
<td>(2I(N + 1) - 1)</td>
<td>(2I(N + 1))</td>
</tr>
<tr>
<td>Modified Farrow structure proposed in [5]</td>
<td>((I + 1)(N + 1))</td>
<td>(2I(N + 1))</td>
<td>(I(N + 1))</td>
</tr>
<tr>
<td>Modified Farrow Structure proposed in this paper</td>
<td>((I + 1)(N + 1))</td>
<td>((2I + 1)(N + 1))</td>
<td>(I(N + 1)\gamma)</td>
</tr>
</tbody>
</table>

V. Detailed simulation results

We define the PSF as being a raised cosine roll-off filter with a roll-off factor of 0.5; the impulse response of the PSF is truncated with a Hamming window. The detailed properties of the PSFs designed by different methods and parameters are listed in Table III.
<table>
<thead>
<tr>
<th>Method</th>
<th>N</th>
<th>2I</th>
<th>γ</th>
<th>δ_p</th>
<th>A_i (dB)</th>
<th>Number of multipliers</th>
<th>Number of adders</th>
<th>Number of coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagrange</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>8.2×10^{-2}</td>
<td>31.5</td>
<td>24</td>
<td>36</td>
<td>18</td>
</tr>
<tr>
<td>L_2</td>
<td>5</td>
<td>32</td>
<td>1</td>
<td>7.5×10^{-4}</td>
<td>78.2</td>
<td>102</td>
<td>192</td>
<td>96</td>
</tr>
<tr>
<td>Window</td>
<td>5</td>
<td>32</td>
<td>1</td>
<td>2.3×10^{-4}</td>
<td>62.0</td>
<td>102</td>
<td>192</td>
<td>96</td>
</tr>
<tr>
<td>Improved Window</td>
<td>5</td>
<td>32</td>
<td>1</td>
<td>1.1×10^{-4}</td>
<td>76.4</td>
<td>102</td>
<td>192</td>
<td>96</td>
</tr>
<tr>
<td>Improved Window</td>
<td>5</td>
<td>32</td>
<td>2</td>
<td>1.2×10^{-4}</td>
<td>108.8</td>
<td>102</td>
<td>192</td>
<td>192</td>
</tr>
<tr>
<td>Improved Window</td>
<td>5</td>
<td>32</td>
<td>4</td>
<td>1.2×10^{-4}</td>
<td>145.3</td>
<td>102</td>
<td>192</td>
<td>384</td>
</tr>
<tr>
<td>Improved Window</td>
<td>5</td>
<td>32</td>
<td>8</td>
<td>1.2×10^{-4}</td>
<td>166.1</td>
<td>102</td>
<td>192</td>
<td>768</td>
</tr>
<tr>
<td>Improved Window</td>
<td>4</td>
<td>32</td>
<td>2</td>
<td>1.2×10^{-4}</td>
<td>85.7</td>
<td>85</td>
<td>165</td>
<td>160</td>
</tr>
<tr>
<td>Improved Window</td>
<td>3</td>
<td>32</td>
<td>4</td>
<td>1.3×10^{-4}</td>
<td>88.8</td>
<td>68</td>
<td>132</td>
<td>256</td>
</tr>
<tr>
<td>Improved Window</td>
<td>2</td>
<td>32</td>
<td>8</td>
<td>1.2×10^{-4}</td>
<td>78.3</td>
<td>51</td>
<td>99</td>
<td>384</td>
</tr>
<tr>
<td>Improved Window</td>
<td>1</td>
<td>32</td>
<td>32</td>
<td>1.0×10^{-3}</td>
<td>77.5</td>
<td>34</td>
<td>66</td>
<td>1024</td>
</tr>
</tbody>
</table>

The detailed PSF design and simulation parameters in the comparison of high-dynamic and non-dynamic pulse-shaped signals shown in the Figure 1(e) are listed in Table IV.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSF</td>
<td>Raised-cosine roll-off PSF</td>
</tr>
<tr>
<td>Roll-off factor</td>
<td>0.5</td>
</tr>
<tr>
<td>f_s</td>
<td>10 MHz</td>
</tr>
<tr>
<td>R_0</td>
<td>0.5 Mbps</td>
</tr>
<tr>
<td>N</td>
<td>2</td>
</tr>
<tr>
<td>$2I$</td>
<td>32</td>
</tr>
<tr>
<td>γ</td>
<td>8</td>
</tr>
<tr>
<td>Doppler data rate variation model</td>
<td>Cosine function</td>
</tr>
<tr>
<td>Doppler data rate variation period</td>
<td>0.1 ms</td>
</tr>
<tr>
<td>Maximum Doppler data rate</td>
<td>0.05 Mbps</td>
</tr>
<tr>
<td>Initial Doppler data phase</td>
<td>0 rad</td>
</tr>
<tr>
<td>Window function</td>
<td>Hamming window</td>
</tr>
</tbody>
</table>