Title: Annual input fluxes and source identification of trace elements in atmospheric deposition in Shanxi Basin: the largest coal base in China

Journal Name: Environmental Science and Pollution Research

Author Names: Cong Zhong a, Zhongfang Yang a, Wei Jiang a, Tao Yu a, Qingye Hou a, Desheng Li b, Jianjun Wang b

Address: a School of Earth Sciences and Resources, China University of Geosciences, No. 29, Xueyuan Road, Haidian District, Beijing 100083, China

b Shanxi Institute of Geological Survey, No.288-1, Pingyang Road, Taiyuan 030001, China

Corresponding author:

Wei Jiang
Email: jianwezc@gmail.com

Zhongfang Yang
Email: zfyang01@126.com

Tao Yu
Email: yutao@cugb.edu.cn
Contents

Fig.S1 Spatial distribution of As fluxes in atmospheric deposition in Shanxi Basin
Fig.S2 Spatial distribution of Cd fluxes in atmospheric deposition in Shanxi Basin
Fig.S3 Spatial distribution of Pb fluxes in atmospheric deposition in Shanxi Basin
Fig.S4 Spatial distribution of Zn fluxes in atmospheric deposition in Shanxi Basin
Fig.S5 Spatial distribution of Se fluxes in atmospheric deposition in Shanxi Basin
Fig.S6 Spatial distribution of Hg fluxes in atmospheric deposition in Shanxi Basin
Fig.S7 Spatial distribution of Cu fluxes in atmospheric deposition in Shanxi Basin
Fig.S8 Spatial distribution of Fe fluxes in atmospheric deposition in Shanxi Basin
Fig.S9 Spatial distribution of Mn fluxes in atmospheric deposition in Shanxi Basin
Fig.S10 Spatial distribution of Co fluxes in atmospheric deposition in Shanxi Basin
Fig.S11 Spatial distribution of Al fluxes in atmospheric deposition in Shanxi Basin
Fig.S12 Spatial distribution of Cr fluxes in atmospheric deposition in Shanxi Basin
Fig.S13 Spatial distribution of Mo fluxes in atmospheric deposition in Shanxi Basin
Fig.S14 Comparison between atmospheric wet and dry deposition: atmospheric wet (left) and dry (right) deposition fluxes in study area
Fig.S15 Comparison between atmospheric wet and dry deposition: wet and dry input flux percentages of trace elements in atmospheric deposition in study area
Fig.S16 Spatial distribution of APCS (F1) on trace elements in atmospheric dry deposition in Shanxi Basin
Fig.S17 Spatial distribution of APCS (F2) on trace elements in atmospheric dry deposition in Shanxi Basin
Fig.S18 Spatial distribution of APCS (F3) on trace elements in atmospheric dry deposition in Shanxi Basin
Table S1 Levels of trace elements in atmospheric deposition and in coals in Shanxi province
Fig.S1 Spatial distribution of As fluxes in atmospheric deposition in Shanxi Basin
Fig. S2 Spatial distribution of Cd fluxes in atmospheric deposition in Shanxi Basin
Fig. S3 Spatial distribution of Pb fluxes in atmospheric deposition in Shanxi Basin
Fig. S4 Spatial distribution of Zn fluxes in atmospheric deposition in Shanxi Basin
Fig. S5 Spatial distribution of Se fluxes in atmospheric deposition in Shanxi Basin
Fig.S6 Spatial distribution of Hg fluxes in atmospheric deposition in Shanxi Basin
Fig. S7 Spatial distribution of Cu fluxes in atmospheric deposition in Shanxi Basin
Fig. S8 Spatial distribution of Fe fluxes in atmospheric deposition in Shanxi Basin
Fig. S9 Spatial distribution of Mn fluxes in atmospheric deposition in Shanxi Basin
Fig. S10 Spatial distribution of Co fluxes in atmospheric deposition in Shanxi Basin
Fig. S11 Spatial distribution of Al fluxes in atmospheric deposition in Shanxi Basin
Fig.S12 Spatial distribution of Cr fluxes in atmospheric deposition in Shanxi Basin
Fig.S13 Spatial distribution of Mo fluxes in atmospheric deposition in Shanxi Basin
Fig.S14 Comparison between atmospheric wet and dry deposition: atmospheric wet (left) and dry (right) deposition fluxes in study area
Fig. S15 Comparison between atmospheric wet and dry deposition: wet and dry input flux percentages of trace elements in atmospheric deposition in study area.
Fig.S16 Spatial distribution of APCS (F1) on the concentrations of trace elements in atmospheric dry deposition in Shanxi Basin
Fig.S17 Spatial distribution of APCS (F2) on the concentrations of trace elements in atmospheric dry deposition in Shanxi Basin.
Fig.S18 Spatial distribution of APCS (F3) on the concentrations of trace elements in atmospheric dry deposition in Shanxi Basin
<table>
<thead>
<tr>
<th></th>
<th>As</th>
<th>Cd</th>
<th>Pb</th>
<th>Se</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposition</td>
<td>16</td>
<td>1.95</td>
<td>124</td>
<td>3.81</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>(4.4-62.3)</td>
<td>(0.06-11.7)</td>
<td>(17.6-638)</td>
<td>(0.06-22.5)</td>
<td>(18.9-3200)</td>
</tr>
<tr>
<td>Shanxi coal</td>
<td>4.1</td>
<td>1.1</td>
<td>24.9</td>
<td>4.7</td>
<td>45.9</td>
</tr>
<tr>
<td></td>
<td>(bdl-82.4)</td>
<td>(bdl-2.5)</td>
<td>(bdl-88)</td>
<td>(bdl-12.6)</td>
<td>(bdl-193)</td>
</tr>
<tr>
<td>Early Permian coals</td>
<td>1.7</td>
<td>1</td>
<td>25</td>
<td>5.4</td>
<td>38.6</td>
</tr>
<tr>
<td>Late Carboniferous coals</td>
<td>2.6</td>
<td>1.2</td>
<td>28.7</td>
<td>6.1</td>
<td>63.3</td>
</tr>
<tr>
<td>Middle Jurassic coals</td>
<td>12.3</td>
<td>0.6</td>
<td>9.4</td>
<td>0.6</td>
<td>23.7</td>
</tr>
</tbody>
</table>

*a: this study

b: Zhang et al. (2004)

bdl: below detection limit.