Purinergic Signalling

Lack of functional P2X7 receptor aggravates brain edema development after middle cerebral artery occlusion

Melanie Kaiser, Anja Penk, Heike Franke, Ute Krügel, Wolfgang Nörenberg, Daniel Huster, Michael Schaefer*

*Corresponding Author. Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Universität Leipzig, Leipzig, Germany.

E-mail: michael.schaefer@medizin.uni-leipzig.de
Online Resource 1

(A) RARE images of all 9 coronal slices representing the assessed brain area. (B) Three consecutive RARE slices as well as the corresponding T2 maps (colorcoded overlay) were used to determine the midline (broken line) following anatomical landmarks. Scale bar: 2 mm. (C) From the T2 map (left) of each of the 9 slices an infarct region was determined (middle, grey-rimmed) and a contralateral ROI (middle, black-rimmed). These ROIs were also used to calculate mean values of ADC (right). Color coding is identical to Fig. 2
Online Resource 2

Confocal images of double immunofluorescence to characterize laminin expression and astroglial responses in peri-infarct tissue and corresponding brain sections of sham-operated mice. The upper rows, corresponding to WT and P2X7−/− mice after tMCAO, illustrate an augmented laminin expression in the ischemic lesion site (arrows) while increased astroglial GFAP expression (arrowheads) prevails in the surrounding tissue over a wider brain area. Sham-operated mice, as represented in the lower rows, show very low levels of laminin and GFAP immunofluorescence. Scale bar: 100 μm
Online Resource 3 Quantification of laminin immunofluorescence in ischemic brain tissue. Ratio to contralateral reference region. Comparable ipsilateral regions were defined for sham-operated mice. $n = 9$ for tMCAO groups, 4 for sham groups