Supplementary Information

Isoconversional analysis of solid state transformations: a critical review. III isothermal and non isothermal predictions.

J. Farjas and P. Roura

GRMT, Department of Physics, University of Girona, Campus Montilivi, E17071 Girona, Catalonia (Spain)

Single step transformations with constant activation energy

Isothermal predictions for single-step transformations with constant activation energy:

![Graph 1D diffusion](image1)

Fig. S1. 1D diffusion: \(f(\alpha) = (2\alpha)^{-1} \). T=250ºC, \(E=75 \) kJ/mol and \(A=10^4 \) 1/s.

![Graph 2D diffusion](image2)

Fig. S2. 2D diffusion: \(f(\alpha) = 1/[\ln(1-\alpha)] \). T=190ºC, \(E=200 \) kJ/mol and \(A=10^{19} \) 1/s.
Fig. S3. Jander’s equation: \[f(\alpha) = \frac{3(1-\alpha)^{\frac{3}{5}}}{2\left[1-(1-\alpha)^{\frac{1}{5}}\right]} \]. T=230ºC, \(E=150 \text{ kJ/mol} \) and \(A=10^{12} \text{ 1/s} \).

Fig. S4. Ginstling and Brounshtein equation: \[f(\alpha) = \frac{3}{2}\left[(1-\alpha)^{-\frac{1}{3}} - 1\right]^{-1} \]. T=230ºC, \(E=300 \text{ kJ/mol} \) and \(A=10^{27} \text{ 1/s} \).
Fig. S5. 2nd order reaction: \(f(\alpha) = (1 - \alpha)^2 \). \(T=500^\circ\text{C}, \ E=50 \text{ kJ/mol and } A=10^1 \text{ 1/s} \).

Fig. S6. 2D reaction: \(f(\alpha) = (1 - \alpha)^{1/2} \). \(T=400^\circ\text{C}, \ E=150 \text{ kJ/mol and } A=10^8 \text{ 1/s} \).

Numerical data: parallel reactions

We have analyzed two equally weighted first order reactions:

\[
\frac{d\alpha_i}{dt} = A_i \exp \left[-\frac{E_i}{RT} \right] (1 - \alpha_i), \ i = 1, 2 \text{ and } \alpha = \frac{1}{2} (\alpha_1 + \alpha_2)
\]

where \(E_1=80 \text{ kJ/mol}^{-1}, \ A_1=10^{10} \min^{-1}, \ E_2=120 \text{ kJ/mol}^{-1} \text{ and } A_2=10^{15} \min^{-1} \).
Fig. S7. Isothermal predictions for T=60ºC.

Fig. S8. Isothermal predictions for T=100ºC.

Numerical data: crystallization with mixed nucleation mechanisms

We have analyzed solid-phase crystallization driven by homogeneous nucleation plus pre-existing nuclei. To calculate the evolution of the transformed fraction we have applied the Kolmogorov-Johnson-Mehl-Avrami theory. Model parameters correspond to those determined experimentally for the crystallization of amorphous silicon (see Table 1 in the manuscript).
We have analyzed the thermogravimetric curves of the thermal decomposition of CaCO$_3$.
Fig. S11. Isothermal and non-isothermal predictions. The sample is heated up to 640°C at 10 K/min and then is held at 640°C. Dashed line: experimental evolution of the sample temperature. Dotted line: onset of the isothermal period.

Fig. S12. Isothermal and non-isothermal predictions. The sample is heated up to 660°C at 10 K/min and then is held at 660°C. Dashed line: experimental evolution of the sample temperature. Dotted line: onset of the isothermal period.
Fig. S13. Isothermal and non-isothermal predictions. The sample is heated up to 680°C at 10 K/min and then is held at 680°C. Dashed line: experimental evolution of the sample temperature. Dotted line: onset of the isothermal period.

Fig. S14. Isothermal and non-isothermal predictions. The sample is heated up to 720°C at 10 K/min and then is held at 720°C. Dashed line: experimental evolution of the sample temperature. Dotted line: onset of the isothermal period.