Supporting information

Bis-Benzimidazolyl Diamide Based Fluorescent Probe for Copper(II): Synthesis, Structural and Fluorescence Studies

Kuldeep Mahiya and Pavan Mathur*

*Department of Chemistry, University of Delhi, Delhi-110007, India

Contents:

1. 1H and 13C NMR spectra of L_1 .. S2-S3.
2. Fluorescence spectra of L_1 with CuCl$_2$... S4.
3. Fluorescence spectra of isolated Cu(II) complex ... S5.
4. Fluorescence spectra of L_1 with metal ions in MeOH S6(a)-S6(g).
5. Fluorescence spectra of L_1 with metal ions in water-methanol mixture ... S7(a)-S7(g).
6. Benesi-Hildebrand plot of L_1 at different Cu$^{2+}$ concentration S8.
7. Absorption spectra of L_1 and Cu$^{2+}$ complex S9 and S10.
8. Absorption spectra of isolated Cu$^{2+}$ complex S11.
Figure S2. 1H-NMR spectrum of diamide probe L_1 in DMSO-d_6 at 400 MHz
Figure S3. 13C-NMR spectrum of diamide probe L_1 in DMSO-d_6 at 125 MHz.
Figure S4. Fluorescence titration of L₁ (c = 100 μM) with CuCl₂ in methanol with increasing Cu²⁺ concentration (12.5-125 μM)
Figure S5. Fluorescence spectra of isolated copper(II) complex of L₁ in methanol.
Figure S6(a)-S6(g). Fluorescence spectra of L_1 (100 μM) after successive addition of various metal ions in methanol (100-500 μM), (a) Co$^{2+}$ (b) Ni$^{2+}$ (c) Pb$^{2+}$ (d) Mn$^{2+}$ (e) Mg$^{2+}$ (f) Zn$^{2+}$ (g) Hg$^{2+}$
Figure S7(a)-S7(g). Fluorescence spectra of L₁ (100 μM) after successive addition of various metal ions in aqueous solution (90% H₂O) (100-500 μM), (a) Co²⁺ (b) Ni²⁺ (c) Zn²⁺ (d) Mn²⁺ (e) Mg²⁺ (f) Pb²⁺ (g) Hg²⁺
Figure S8. Benesi-Hildebrand linear analysis plot of L_1 in methanol (left) and in water-methanol mixture (9:1) (right) at different Cu$^{2+}$ concentration.
Figure S9. Absorption spectrum of 100 μM solution of L₁ in methanol (left) and absorption spectrum of 100 μM solution of L₁ in water-methanol mixture (9:1) (right) after adding equimolar amount of Cu²⁺ ions.

Figure S10. Absorption spectra of diamide L₁ at different concentrations in MeOH.
Figure S11. UV absorption spectra of isolated Cu(II) complex in methanol and water-methanol mixture (9:1)