Supporting information: Influence of divalent counterions on the solution rheology and supramolecular aggregation of carboxymethyl cellulose

Carlos G. Lopez*, Walter Richtering*

* Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany

Supplementary Figures

Figure S1 shows the same viscosity data as Figure 1 along with fits to a horizontal line and a power-law at low and high shear rates respectively.

Figure S2 plots the apparent diffusion coefficients of CaCMC solutions as a function of q^2 along with Fits to Eq. 2.

Figure S2: Apparent diffusion coefficients as a function of q^2 for CaCMC solutions of $c = 8 \times 10^{-3}$ M filtered through different pore sizes, from top to bottom: 0.1 μm, 0.2 μm, 0.45 μm and 0.8 μm.

Figure S3 plots the flow index obtained from the intercept method as a function of polymer concentration for various salts of CMC. Fits to Eq. 8 are included, the fit parameters are collected in Table 5.

Preprint submitted to Journal of \LaTeX Templates November 13, 2018

*Corresponding author

Email address: lpez@pc.rwth-aachen.de (Carlos G. Lopez)
Figure S3: Flow index obtained from Figure S1 along with fits to Eq. Sym-
bols have the same meaning as in the main text.

Figure S4: Comparison of the shear rate dependent viscosities of BaCMC at
$c = 0.207 \text{ M}$ and CaCMC at $c = 0.196 \text{ M}$.

\[\eta^* - \text{BaCMC} \]
\[\eta - \text{BaCMC} \]
\[\eta - \text{CaCMC} \]