Online Resource 2 Submitted to Cellulose

Article Title: Wood Characteristics and Enzymatic Saccharification Efficiency of Field-grown Transgenic Black Cottonwood with Altered Lignin Content and Structure

Zhouyang Xiang1, †, Suman Kumar Sen1, Aparna Roy1, Douyong Min1, Dhanalekshmi Savithri1, Hasan Jameel1, *, Vincent Chiang2, and Hou-min Chang1

1Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA

2Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA

†Present address: Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA

*Corresponding author: Email: jameel@ncsu.edu; Tel: 1-919-522-1923
Figure S1. Carbohydrate saccharification efficiency (with standard error bar) after EH of transgenic trees grown in mountain 2nd year with or without pretreatments (e.g. as4CL(11.8)26.8 had a greenhouse lignin content of 11.8% and a current lignin content of 26.8%).

Figure S2. Carbohydrate saccharification efficiency (with SE bar) after EH of transgenic trees grown in mountain 3rd year with or without pretreatments. (e.g. as4CL(11.8)32.7 had a greenhouse lignin content of 11.8% and a current lignin content of 32.7%)
Figure S3. Carbohydrate saccharification efficiency (with SE bar) after EH of transgenic trees grown in coastal plain 2nd year with or without pretreatments (e.g. as4CL(11.8)17.4 had a greenhouse lignin content of 11.8\% and a current lignin content of 17.4\%).

Figure S4. Carbohydrate saccharification efficiency (with SE bar) after EH of transgenic trees grown in coastal plain 3rd year with or without pretreatments (e.g. as4CL(11.8)26.5 had a greenhouse lignin content of 11.8\% and a current lignin content of 26.5\%).