Online Resource

for

1,4-Dioxane degradation characteristics of *Rhodococcus aetherivorans* JCM 14343

Daisuke Inoue^{a,*}, Tsubasa Tsunoda^b, Norifumi Yamamoto^{a,c}, Michihiko Ike^a, Kazunari Sei^{b,d}

^a Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

^b Environment and Medical Sciences Course, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan

^c Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama, Kanagawa 245-0051, Japan

^d Department of Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan

*Corresponding author. E-mail: d.inoue@see.eng.osaka-u.ac.jp
Fig. S1. 1,4-Dioxane degradation profiles for strain JCM 14343 at different initial concentrations of 1,4-dioxane. Error bars indicate standard deviation (n = 3).
Fig. S2. 1,4-Dioxane degradation profiles for strain JCM 14343 under different temperature (left) and pH (right) conditions. Error bars indicate standard deviation (n = 3).
Fig. S3. Degradation of ethylene glycol (EG) (A) and occurrence of glycolic acid (B) during 1,4-dioxane degradation by strain JCM 14343 in the presence of EG at 0 mg/L (open triangle), 33 mg/L (closed triangle), 63 mg/L (open square), 121 mg/L (closed square), 462 mg/L (open circle), and 899 mg/L (closed circle). Error bars indicate standard deviation (n = 3).