Nao Devils Dortmund

Team Report 2011

Stefan Tasse, Sören Kerner, Oliver Urbann, Matthias Hofmann, Ingmar Schwarz

Robotics Research Institute
Section Information Technology
Contents

1 Introduction .. 1
 1.1 Team Description ... 2
 1.2 Software Overview .. 2

2 Motion .. 4
 2.1 Walking .. 4
 2.1.1 Dortmund Walking Engine 5
 2.1.2 The ZMP/IP-Controller 7
 Sensor Feedback Sources 7
 Integration of the Measurements, a Sensor Fusion 9
 Experimental Sensor Feedback Methods 10
 2.1.3 ZMP Generation .. 10
 2.1.4 Swinging Leg Controller 12
 2.2 Kicking .. 12
 2.3 Special Actions ... 13

3 Cognition .. 15
 3.1 Image Processing ... 15
 3.2 Line and Circle Detection 17
 3.3 Localization .. 19
 3.4 Distributed World Modeling 20
 3.5 Current Research ... 22
 3.5.1 Cooperative EKF-SLAM World Modeling 23
 3.5.2 Active Vision ... 25
 3.5.3 Colorable-less Image Processing 28

4 Behavior ... 31
 4.1 Implementation of Collaborating Soccer Agents 33
 4.2 Behavior Coordinate System 35
 4.3 GoTo Motion Command 36
 4.4 Debug Tool .. 37

5 Conclusion and Outlook 42
Getting Started

A.1 Setting up the development environment

- A.1.1 Windows ... 43
- A.1.2 Linux ... 45
- A.1.3 Build configurations .. 45

A.2 Setting up the robot .. 45

- A.2.1 Preparing the memory stick 45
- A.2.2 Copying your current code and configuration to the robot ... 46
- A.2.3 Starting and stopping the robot 46
- A.2.4 How to connect with the robot and debug 47
- A.2.5 Using the XABSL Debug Tool 47

Framework

B.1 Modules ... 49

B.2 Representations .. 50

B.3 Origin of Modules .. 50

Walking Engine Parameters

C.1 File walkingParams.cfg ... 55

C.2 File NaoNG.n .. 58
Chapter 1

Introduction

Competitions such as the RoboCup provide a benchmark for the state of the art in the field of autonomous mobile robots and provide researchers with a standardized setup to compare their research. Additionally the RoboCup Standard Platform League does not only provide researchers with a common setup, but also with the same hardware platform to use. This renders increased importance to publications of those teams, since extensive documentation and especially releasing source code allows other researchers to compare results and methods, reuse and improve them, and to further common research goals.

In the course of this report some of the points of the robot software and current the research approach of the RoboCup team Nao Devils are described. An overview about the Nao Devils software is given in section 1.2. This software has been used in the competitions in 2011 and is also included in the code release that is published along with this report[^1]. This code release contains the complete code used by team Nao Devils during the RoboCup 2011, but the behavior and the tuned walking parameters are replaced by a more basic version. Also contained are the developed tools, out of which the behavior debug tool is described in detail in section 4.4.

Stable motions are of crucial importance in the context of biped robots. Thus, the following chapter of the document will describe the motion control process emphasizing the Dortmund Walking Engine which has been the first closed loop walking engine applied to the Nao in RoboCup 2008, 2009 and 2010. The version of RoboCup 2010 was able to reach walking speeds of up to 44cm/s, which is, to our knowledge, the highest speed yet achieved with the robot Nao. Incidentally this speed exceeds the “theoretical maximum walking speed” given by Aldebaran in an earlier specification by almost 50%. For RoboCup 2011, a lot of effort was put into the development of a walk that is able to cope with a higher center of mass that results into the mitigation of the problem of quickly overheating joints. Another important task was to reduce the intensity of oscillations of the body that occur during the movement of the robot.

Chapter 3 focuses on the perception processes of the Nao while section 4 presents the concepts and ideas for the implementation of the robots behavior that includes extensions to the XABSL specification of previous years. In each of those chapters 2, 3 and 4 the solutions currently in use are described in detail and further references supplied when appropriate, but also the current research is presented. This includes concepts that

were already successfully applied and evaluated, but haven’t found their way into the competition code for RoboCup 2011 for various reasons, as well as concepts currently under development. Chapter 5 summarizes those current research topics and the current development process for 2012.

The appendix provides further information and tutorials about how to set up the development environment and the robot (appendix A), use the given software framework (appendix B), and about the parametrization of the presented walking engine (appendix C).

1.1 Team Description

The Nao Devils Dortmund are a RoboCup team by the Robotics Research Institute of TU Dortmund University participating in the Standard Platform League since 2009 [1] as the successor of team BreDoBrothers, which was a cooperation of the University of Bremen and the TU Dortmund University [2]. The team consists of numerous undergraduate students as well as researchers. The senior team members of Nao Devils Dortmund have already been part of the teams Microsoft Hellhounds [3] (and therefore part of the German Team [4]), DoH! Bots [5] and BreDoBrothers.

The Team was actively participating in the RoboCup events during the last range. Major successes were the 3rd places in RoboCup 2009, GermanOpen 2009 and the 2nd place in RoboCup 2011. The Team also participated in all technical challenges in these years while reaching the 3rd in RoboCup 2009. Besides official RoboCup competitions the Nao Devils regularly participate at other international events such as the Festival della Creatività in Florence, Italy, the RoboCup Exhibition and Engagement Event in Eisteddfod of Wales, UK, and the Athens Digital Week in Greece. It is also planned to take part in the Standard Platform League of RoboCup 2012 in Mexico City, Mexico.

1.2 Software Overview

The software package used by team Nao Devils consists of a robotic framework, a simulator and different additional tools.

The framework, running on the Nao itself, is based on the German Team Framework [6]. The latest version, released by team B-Human [7] was used as a basic structure in 2010 and 2011, replacing the motion, vision and behavior modules by team Nao Devils’ own versions (see appendix B.3 for details about the origin of each module). The framework communicates with NaoQi using the libBHuman, completely separating it from Aldebaran’s software modules. Support for Microsoft Visual Studio 2008 is included, using a cross compiler to generate native code for the Linux running on the Nao. For a short introduction and overview on the framework see appendix B. A more in-depth description can be found in [7].

To test developments in simulation, the software SimRobot was used instead of commercial alternatives, such as Webots from Cyberbotics [8]. Being open source offers great advantage, allowing to adapt the code to own developments. In addition having the feature to directly connect to the robot and debug online (see appendix A.2.4) is very

[^3]: http://www.cyberbotics.com/
convenient during development. SimRobot [8] is a kinematic robotics simulator developed in Bremen which (like Webots) utilizes the Open Dynamics Engine (ODE) to approximate solid state physics. Using update steps of up to 1 kHz for the physics engine enabled the possibility of realistic simulated walking experiments closely matching the gait of the real robot. It also features realistic camera image generation including effects like motion blurring, rolling shutter, etc.

To visualize behavior the adapted XABSL editor of the German Team as well as the Java reimplementation [5] done by team Nao Team Humboldt are used. Since debugging behavior running on the real robot can be really difficult to comprehend, team Nao Devils developed a XABSL debug tool. A logging mechanism records all XABSL decisions online during gameplay. With help of the XABSL debug tool, developed by team Nao Devils, these logs can be combined with a video file, to analyze and replay robots decisions. A detailed description of this tool can be found in section 4.4.

Chapter 2

Motion

The main challenge of humanoid robotics certainly are the various aspects of motion generation and biped walking. Dortmund has participated in the Humanoid Kid-Size League during Robocup 2007 as DoH! Bots [5] and before in RoboCup 2006 as the joint team BreDoBrothers together with Bremen University. Hence there has already been some experience in the research area of two-legged walking even before participating in the Nao Standard Platform League of 2008 as the rejoined BreDoBrothers.

The kinematic structure of the Nao has some special characteristics that make it stand out from other humanoid robot platforms. Aldebaran Robotics implemented the HipYawPitch joints using only one servo motor. This fact links both joints and thereby makes it impossible to move one of the two without moving the other. Hence the kinematic chains of both legs are coupled. In addition both joints are tilted by 45 degrees. These structural differences to the humanoid robots used in previous years in the Humanoid League result in an unusual workspace of the feet. Therefore existing movement concepts had to be adjusted or redeveloped from scratch. The leg motion is realized by an inverse kinematic calculated with the help of analytical methods for the stance leg. The swinging leg end position is then calculated with the constraint of the HipYawPitch joint needed for the support foot. This closed form solution to the inverse kinematic problem for the Nao has been developed in Dortmund and used since RoboCup 2008 when other teams as well as Aldebaran themselves still used iterative approximations.

2.1 Walking

In the past different walking engines have been developed following the concept of static trajectories. The parameters of these precalculated trajectories are optimized with algorithms of the research field of Computational Intelligence. This allows a special adaption to the used robot hardware and environmental conditions. Approaches to move two legged robots with the help of predefined foot trajectories are common in the Humanoid Kid-Size League and offer good results. Nonetheless with such algorithms directly incorporating sensor feedback is much less intuitive. Sensing and reacting to external disturbances however is essential in robot soccer. During a game these disturbances come inevitably in the form of different ground-friction areas or bulges of the carpet. Additionally contacts with other players or the ball are partly unpreventable and result in external forces acting on
the body of the robot.

To avoid regular recalibration and repeated parameter optimization the walking algorithm should also be robust against systematic deviations from its internal model. Trajectory based walking approaches often need to be tweaked to perform optimally on each real robot. But some parameters of this robot are subject to change during the lifetime of a robot or even during a game of soccer. The reasons could manifold for instance as joint decalibration, wear out of the mechanical structure or thermic drift of the servo due to heating. Recalibrating for each such occurrence costs much time at best and is simply not possible in many situations.

The robot Nao comes equipped with the wide range of sensors capable of measuring forces acting on the body, namely an accelerometer, gyroscope and force sensors in the feet. To overcome the drawback of a static trajectory playback, team Nao Devils developed a walking engine capable of generating online dynamically stable walking patterns with the use of sensor feedback.

2.1.1 Dortmund Walking Engine

A common way to determine and ensure the stability of the robot utilizes the zero moment point (ZMP) \[9\]. The ZMP is the point on the ground where the tipping moment acting on the robot, due to gravity and inertia forces, equals zero. Therefore the ZMP has to be inside the support polygon for a stable walk, since an uncompensated tipping moment results in instability and fall. This requirement can be addressed in two ways.

On the one hand, it is possible to measure an approximated ZMP with the acceleration sensors of the Nao by using equations \[2.1\] and \[2.2\] \[10\]. Then the position of the approximated ZMP on the floor is \((p_x, p_y)\). Note that this ZMP can be outside the support polygon and therefore follows the concept of the fictitious ZMP.

\[
\begin{align*}
 p_x &= x - \frac{zh}{g} \ddot{x} \\
 p_y &= y - \frac{zh}{g} \ddot{y}
\end{align*}
\]

On the other hand it is clear that the ZMP has to stay inside the support polygon and it is also predictable where the robot will set its feet. Thus it is possible to define the trajectory of the ZMP in the near future. The necessity of this will be discussed later. A known approach to make use of it is to build a controller which transforms this reference ZMP to a trajectory of the center of mass of the robot \[11\]. Figure \[2.1.1\] shows the pipeline to perform the transformation. The input of the pipeline is the desired translational and rotational speed of the robot which might change over time. This speed vector is the desired speed of the robot, which does not translate to its CoM speed directly for obvious stability reasons, but merely to its desired average. The first station in the pipeline is the Pattern Generator which transforms the speed into desired foot positions \(P_{\text{global}}\) on the floor in a global coordinate system used by the walking engine only. Initially this coordinate system is the robot coordinate system projected on the floor and reset by the Pattern Generator each time the robot starts walking. The resulting reference ZMP trajectory \(p_{\text{ref}}^\text{global}\) calculated by “ZMP Generation” (see section \[2.1.3\] for details) is also defined in this global coordinate system.
Figure 2.1: Control structure visualization of the walking pattern generation process. Data expressed in the robot coordinate system are represented by a blue line and data expressed in the global coordinate system is represented by a red line.
The core of the system is the ZMP/IP-Controller, which transforms the reference ZMP to a corresponding CoM trajectory (\mathbf{R}_{ref}) in the global coordinate system as mentioned above. The robot’s CoM relative to its coordinate frame ($\mathbf{R}_{\text{local}}$) is given by the framework based on measured angles. Equation 2.3 provides the foot positions in a robot centered coordinate frame.

$$\mathbf{P}_{\text{robot}}(t) = \mathbf{P}_{\text{global}}(t) - \mathbf{R}_{\text{ref}}(t) + \mathbf{R}_{\text{local}}(t)$$

Those can subsequently be transformed into leg joint angles using inverse kinematics. Finally the leg angles are complemented with arm angles which are calculated using the x coordinates of the feet.

2.1.2 The ZMP/IP-Controller

The main problem in the process described in the previous section is computing the movement of the robot’s body to achieve a given ZMP trajectory. To calculate this, a simplified model of the robot’s dynamics is used, representing the body by its center of mass only. The ZMP/IP-Controller uses the state vector $\mathbf{x}=(x, \dot{x}, p)$ to represent the robot where x is the position of the CoM, \dot{x} the speed of the CoM and p the resulting ZMP [10].

The system’s continuous time dynamics can be represented by

$$\frac{d}{dt}\begin{bmatrix} x \\ \dot{x} \\ p \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ \frac{g}{z_h} & 0 & -\frac{g}{z_h} \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ p \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} v$$

where $v = \dot{p}$ is the system input to change the ZMP p according to the planned target ZMP trajectory p^{ref}. Discretizing equation 2.4 yields the system equation

$$\mathbf{x}(k + 1) = \mathbf{A}_0 \mathbf{x}(k) + \mathbf{b}v(k)$$

where $\mathbf{x}(k)$ denotes the discrete state vector at time $k\Delta t$, $v(k)$ denotes the controller for the system and

$$\mathbf{A}_0 = \begin{bmatrix} 1 & \Delta t & 0 \\ \frac{g}{z_h}\Delta t & 1 & -\frac{g}{z_h}\Delta t \\ 0 & 0 & 1 \end{bmatrix}$$

describes the system’s behavior. Details about the controller design can be found in [13].

One important fact about the controller is, that it needs a preview of the reference ZMP. As can be seen in figure 2.2, it is not sufficient to start shifting the CoM simultaneously with the ZMP. Instead the CoM has to start moving before the ZMP does. Therefore a preview of p^{ref} is needed to be able to calculate a CoM movement leading to a stable posture.

Sensor Feedback Sources

A humanoid robot like the Nao has multiple sensors to measure the dynamical and kinematical state. Using only one of those, e.g. the ZMP measured by the foot pressure...
sensors or the acceleration, has some disadvantages, like noisy data or measurement delays. A common way to cope with these problems is to implement a sensor fusion using a kalman filter. Looking at the control structure of the ZMP/IP-Controller reveals that parts of the state vector can be measured, namely the position of the center of mass $x^{\text{sensor}}(k)$ and the actual ZMP $p^{\text{sensor}}(k)$. The first can be calculated using the center of mass positions c_i of each link expressed in the coordinate frame of link i:

$$x^{\text{sensor}}(k) = T^w_s(k) \cdot \left(\frac{1}{\sum_i m_i} \sum_i T^s_{O_i}(k) \cdot c_i \cdot m_i \right)$$ \hspace{1cm} (2.7)$$

where

- s is the coordinate system of the support foot.
- w is the world coordinate system.
- O_i is the coordinate system of link i.
- m_i is the mass of link i.
- $T^j_i(k)$ is the homogeneous coordinate system transformation matrix from coordinate system i to j.

The later is the weighted average of the data measured by each pressure sensor in the feet. In case of the Nao robot the CoP for the left $p^{\text{sensor}}_{\text{left}}(k)$ and right foot $p^{\text{sensor}}_{\text{right}}(k)$ are given by the API and must be combined:
\[p^{\text{sensor}}(k) = \frac{f_l(k)}{F} \cdot T_{O_l}(k) \cdot p^{\text{sensor}}_{\text{left}}(k) + \frac{f_r(k)}{F} \cdot T_{O_r}(k) \cdot p^{\text{sensor}}_{\text{right}}(k) \]

(2.8)

where

- \(O_l, O_r \) is the coordinate system of left and right foot respectively.
- \(f_l(k), f_r(k) \) is the force exerted on the left and right foot respectively.
- \(F = f_l(k) + f_r(k) \) is the overall force exerted on the robot.

This kind of ZMP measurement has the same limitation as the definition of the ZMP, it is bounded to the supporting area. As a result, the ZMP will be measured at the edge of the support area when the robot tilts. The measurement of the center of mass position is limited in a similar way. The result of flexibilities and tolerances in the joints can be measured, but not the result of the tilt of the robot. This is not necessarily a disadvantage, since it limits the reaction of the robot to disturbances to securely executable movements, especially if the robots falls down. The limitation of the CoM measurement also corresponds to the ZMP measurement limits.

Regarding the coordinate system transformations, there is one noticeable point. The transformations to the world coordinate system \(T_{O_l}(k) \) and other transformations are separated. The reason for that is the way of calculating. The transformations between the coordinate systems of the links are calculated using forward kinematics and measured angles. However, the position and orientation of the feet in the world coordinate system cannot be measured directly. Possible sources would the self localization or the odometry calculated by integrating the acceleration sensor, both combined with forward kinematics. But these sources are inaccurate and lead to large noise in the measured CoM and ZMP positions. Measurable errors during a walk are much lower than these measurement errors and it would be not possible to react correctly. Therefore the target foot positions and orientations given by the Pattern Generator are used for \(T_{O_l}(k) \).

Integration of the Measurements, a Sensor Fusion

In the last chapter two measurable values of the state vector \(x(k) \) are presented. The measurable output of the system given by equation 2.5 can now be defined as

\[y(k) = c \cdot x(k) = \begin{bmatrix} x^{\text{sensor}}(k) \\ p^{\text{sensor}}(k) \end{bmatrix} \]

(2.9)

with

\[c = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

(2.10)

Since not the full state can be measured, an observer is needed. Figure 2.3 shows the overall system configuration. The observer is put in parallel to the real robot and receives the same output of the controller to estimate the behavior of the real system and is supported by the measurements of the ZMP and the CoM. Derived from equations 2.5 and 2.9 the observer can be defined as follows:

\[\ddot{x}(k+1) = A_0 \ddot{x}(k) + L [y(k) - c\ddot{x}(k)] + bu(k). \]

(2.11)
It can be shown, that this system is observable.

An intuitive illustration of an observer-based controller’s performance, where the measurable system output is the ZMP, is given in figure 2.4. Here a constant error for a period of 1.5 s is simulated. This error could be interpreted as an unexpected inclination of the ground or a constant force pushing the robot to one side. The control system incorporates this difference and compensates by smoothly adjusting the CoM trajectory, which consequently swings more to the opposite direction.

A more detailed presentation of our past approaches and algorithms is presented in [13] and their application to the Nao in [14].

Experimental Sensor Feedback Methods

Besides the sensor feedback realized by the ZMP/IP-Controller there are two more methods implemented. While the ZMP/IP-Controller is responsible for controlling the translation of the center of mass, the orientation is expected to be 0. This assumption is not correct, and should be handled in another way. Therefore a module called GyroTiltController is implemented which realizes a PID controller using the output of the gyroscope directly to control the body roll and tilt. The gains of the controller are chosen such that it has a damping effect on an oscillating body.

2.1.3 ZMP Generation

The ZMP Generation calculates a reference ZMP using the given foot steps. Within the support polygon the position can be freely chosen since every position results in a stable walk. On the x axis the ZMP proceeds with the desired speed. This results in a movement of the center of mass with constant velocity. On the y axis the ZMP is a

\[E_{\text{measured ZMP}} - E_{\text{reference ZMP}} \]

A matlab script calculating the gains can be found in the CodeRelease: /Utils/Matlab/writeParamNG.m.

\[E_{\text{calculated ZMP}} \]

Figure 2.4: Performance of the controller under the influence of a constant external disturbance resulting in an error in the measured ZMP.
Figure 2.5: The control polygon consists of 4 points per foot with constants coordinates within the respective coordinate frame. In this example a positive x speed is assumed for a better visualization.

Figure 2.6: Resulting reference ZMP along the y axis.
Bézier curve with a control polygon of 4 points and dimension 1. The coordinate of each point is constant within the coordinate system of the respective foot. Figure 2.5 gives an example. In the right single support phase the control polygon is \(P_r = \{ p_1, p_2, p_3, p_4 \} \). The same applies to the other single support phase. In the double support phase the control polygon consists of the points \(p_4, p'_1, p'_2, p_5 \), where \(p'_1 \) and \(p'_2 \) are the same point in the middle of \(p_4 \) and \(p_5 \). This leads to a smooth transition between the single and double support phases. Figure 2.6 shows the resulting reference ZMP along the y axis.

2.1.4 Swinging Leg Controller

The PatternGenerator sets the foot positions on the floor. They could be imagined like footsteps in the snow. Therefore the footpositions of the swinging leg during a single support phase are missing. They are added by the Swinging Leg Controller which calculates a trajectory from the last point of contact to the next utilizing a B-spline. The control polygon consists of 9 points with 3 dimensions each. The x and y coordinates are set along the line segment between the start and end point. The z coordinates are increased and decreased respectively by \(\frac{1}{6} \) of the maximal step height. The z coordinate over time can be seen in figure 2.7(a). To reduce the influence of the leg inertia the feet are lifted and lowered at the same speed. Figure 2.7(b) shows the z coordinate over x. The foot reaches its end position along the x axis some time before the single support phase ends. This reduces the error if the foot hits the ground too early.

2.2 Kicking

In every SPL soccer match, whether it is for a pass or a shot on the goal, a precise kick that can be adjusted at the last possible moment, to cover up an imprecise ball model or a moving ball in an one on one situation, has become a necessity. Since covering all
possible kick angles and strengths with Special Actions (see section 2.3) is simply not possible, a dynamic kick was needed.

Our current implementation uses the inverse kinematics from our walking engine to move the kicking foot towards the ball. With a fast kick execution time, the stability of the robot can hardly be ensured with any kind of reactive controller. Therefore we concentrated on an implementation that works without a controller and still is able to execute a stable kick with all desired angles and strengths. The kick motion needs only one input, the kick target: a field position relative to the robot.

The main focus in the development for our kick was its stability while still being able to kick hard. Therefore the kick process is divided into several phases (see figure 2.8):

- lean - shift the robots weight to the standing foot
- prepare - move the foot to a point near the ball
- execute - a fast straight motion towards the ball
- prepare back - back to the position after lean
- lean back - back to the original robots position (standing)

The separation into these phases allows a parameterization of the kick which can be adjusted and optimized easily. After the leaning process, our kick takes the relative ball coordinates from our ball model at the beginning of the prepare phase, moves the foot to a point in front of the ball so that the execute phase can kick the ball in one straight move of the foot in the desired direction. For this, the kicking foot origin is placed in a fixed distance to the ball on the the circle that this specific distance creates. Due to the different trajectories resulting from a sidekick compared to a frontkick, separate leaning angles for those motions are used and, since the foot of the Nao robot is not completely smooth or round, the kicking angle is not entirely free. Currently, the kicking angle is limited from 0 to 25 degrees for a frontkick and from 65 to 90 degrees for a sidekick, which is quite enough for almost any real game situation.

After the kicking foot has been brought into position, the kicking motion itself is done before the robot begins a reverse leaning process to again ensure its stability.

2.3 Special Actions

All movements except walking and kicking are executed by playback of predefined motions called Special Actions. These movements consist of certain robot postures called key frames and transition times between these. Using these transition times the movement between the key frames is executed as a synchronous point-to-point movement in the joint space. Such movements can be designed easily by concatenating recorded key frames.
Figure 2.8: The Robot in the three main phases of the kick, triggered from SimRobot.
Chapter 3

Cognition

From the variety of Nao’s sensors only microphones, the camera and sonar sensors can potentially be used to gain knowledge about the robot’s surroundings. The microphones haven’t been used so far and are not expected to give any advantage. The sonar sensors provide distance information of the free space in front of the robot and can be used for obstacle detection. However, the usage of these sensors depends on maintaining a strictly vertical torso or at least tracking its tilt precisely since otherwise the ground might give false positives due to the wide conic spreading of the sound waves. Additionally, for certain fast walk types the swinging arms were observed to generate such false positives, too, and the sonar sensor hardware in general is currently unreliable and often does not recover from failure once the robot has fallen down. Thus for exteroceptive perception the robot greatly relies on its camera mounted in the head.

The following chapter describes the information flow in the cognition process starting from image processing and its sub-tasks in section 3.1. Special focus is given to new developments since 2009, meaning an improved line and center circle detection (see section 3.2) and a new localization module based on a multiple-hypotheses unscented Kalman filter (see section 3.3). Finally section 3.5 gives an outlook about current research that did not find its way into the code for RoboCup 2010, yet, but is expected to be applied in 2011.

3.1 Image Processing

The vision system used for the Nao in the RoboCups 2008 to 2011 is based on the Microsoft Hellhounds’ development of 2007 [16]. The key idea is to use as much a-priori information as possible to reduce both the scanning effort and the subsequent calculations needed. To process only a small fraction of all pixels the image is scanned along scan lines of varying length depending on the horizon’s projection in the image (see fig. 3.1). These scan lines are projections of radial lines originating from the point on the field below the camera center. Keeping the angular difference constant allows the implicit usage of this information during the scanning process, optimizes transformations between image and field coordinate systems and significantly simplifies the inter-scan-line clustering and reasoning about detected objects. In case of ambiguity additional verification scans are carried out. A sparse second set of horizontal scan lines is introduced to detect far goals.

All relevant objects and features are extracted with high accuracy and detection rates.
Figure 3.1: Image scanned along projections of radial lines on the field.

Figure 3.2: Objects and features recognized in the camera image.
Since the Nao SPL is the first RoboCup league (neglecting the simulation leagues and the Small Size League with global vision) without extra landmarks beside the goals, detecting features on the field itself becomes more important. The detection of those is described in more detail in the following section.

It has to be noted that all current image processing routines still depend on static color calibration, which must be done manually at the beginning of a competition. We hope to overcome this dependency for 2012.

3.2 Line and Circle Detection

Besides lines also their crossings (fig. 3.2(a)) and the center circle (fig. 3.3(a)) are determined. The latter in combination with the middle line allows for a very accurate pose estimation in the center area of the field (see fig. 3.3(b)), leaving only two possible symmetrical positions which can be easily resolved with any goal observation. In certain situations line crossings from the penalty area can even be used to disambiguate a left or right goal post (see fig. 3.2). Thus instead of having to look up for the crossbar or around for the second post the robot can focus on tracking the ball.

The input for the line and circle detection algorithm is a set of line points generated in the main scanning routines described above. Each point annotates a position where a scan line intersected a field line. Besides the positions both in the image and on the field additional information are given about the gradient and the index of the scan line which generated this line point.

The previous approach used till 2009 consisted of a clustering heuristic based on positions and gradients to generate line fragments. This clustering has squared complexity in the number of line points but can be computed efficiently on the Aibo/Nao in less than 1 ms. Those line fragments are fused into lines to calculate line crossings on the field. In an intermediate step the line fragments are tested for circle tangents. The intersection of the perpendicular bisector of each pair of fragments in field coordinates can be considered as a center of the expected center circle. A visible center circle in the image tends to
generate several of those intersections close to each other with approximately the right radius. The resulting center point’s precision can be improved further by projecting it to the most likely middle line hypothesis. The existence of a suitable middle line hypothesis is also useful to reject false positives generated from other green-white structures around the field. This is a fast method for line and circle detection that worked well on the Aibo since 2005 (as part of the code which won several Opens with the Microsoft Hellhounds and the RoboCup with the German Team) and also on the Nao (with minor adaptations in parametrization). A drawback on the current SPL field however is that the white goal net tends to generate a number of line fragment false positives. Additionally, a significant part of the center circle needs to be visible for reliable detection.

For 2010 the line and circle recognition has been rewritten with the goal to overcome those problems. The implementation of this method can be found in the module NDLineFinder2, which has been used for RoboCup 2010 and 2011. While the color information and the general quality of the Aibo’s camera was inferior to the Nao’s, the latter one’s in-built edge enhancement often generates artifacts around the field line edges which in turn decrease the gradient quality when applying for example a simple Sobel operator as done here. This is why the new approach neglects gradient information. The input line points are linked into chains based on their originating scan lines, their relative distances, and white color classification on at least one of the pixels between them perpendicular to their connection. This concatenation is of linear complexity in the number of line points in case those line points are sorted by their originating scan lines which is given due to the scanning process itself.

Those resulting chains (as illustrated in figure 3.4) offer easy, reliable and efficient ways to extract line fragments or circle fragments. Line fragments can be found by identifying sub-chains exceeding a specified minimal length which comply to a given line heuristic. In this case the average and the biggest deviation from a linear regression line fit is chosen. In order not to evaluate new linear regressions for the addition of every new point those sub-chains are extended as long as additional points do not violate the thresholds for the initial line fit. In case the average or biggest error exceeds the initial line fit, a new fit is calculated and examined, and eventually extended further.

The extraction of circle parts out of the given line point chains is done in a similar
fashion. One possibility to do this would be to try and find a series of points with similar non-zero curvature. This however is very prone to noise since the discretization introduced by the pixels is of the same magnitude as the curvature itself as can be seen in figure 3.3(3). The alternative approach taken here is the identification of trends in the direction change of line point connections. As a first step the local tangential angle at the line point is calculated as a smoothed value from the point and its predecessors and successors (if available). Similar to the linear regression for line fragments sub-chains are identified which angular changes show a trend significantly different from zero (since zero corresponds to straight lines) with average and maximum errors below a certain threshold. As for the line detection, recomputing the trend is only necessary for a small subset of points belonging to a single circle fragments (indicated with red connections in figure 3.3(a)). The points of all identified sub-chains are then used to estimate the best-fit circle in field coordinates using the Levenberg Marquardt method. This circle percept can be used as is or augmented with the line information to provide an orientation for the center circle in case a suitable middle line can be identified. The results of the described line and circle detection algorithms are shown in figure 3.3 and 3.5.

3.3 Localization

One main focus of research is on Bayesian filters, where several enhancements for real time vision-based Monte Carlo localization systems [17] have been presented, and the approach based on the detection of field features without using artificial landmarks has won the “almostSLAM” Technical Challenge at RoboCup 2005 [6]. The methods used up until RoboCup 2009 have all been based on those particle filters developed between 2005 and 2007. For RoboCup 2010 however a different approach has been developed and used in the competitions of 2010, and also in 2011 without any modifications [?].

Inspired by [18] the basic idea was to combine the smoothness and performance of Kalman filtering with a multi-hypothesis system. The latter is necessary to allow recovery from huge errors due to extended periods of integrated odometry errors without correcting through observations, or rapid unexpected position changes due to contact with other robots or “teleportation” by human intervention. All of those issues occur in robot soccer.
games and are amplified by the huge odometry errors inherent in fast biped walking.

A classic Kalman filter applied to localization in a SPL scenario can only be used for position tracking, and only as long as the estimate does not deviate too much from the true positions. Most perceptions on a SPL field are ambiguous, so the sensor update will only be done with the most likely data association. At the same time, the perception of field features like field line crossings is often uncertain so that L- and T-crossings cannot be distinguished (e.g. as in figure 3.4(b)). In such cases wrong associations tend to drive the estimation further away from the true position. Recovery from such situations is only possible when assigning huge weights (e.g. small observation covariances) to unique perceptions like observing both goal posts in the same frame which then decreases the robustness against false perceptions originating from the audience around the field.

This problem is addressed in [18] with a sum-of-Gaussians Kalman filter, where each Gaussian is split into several new ones representing the results of different association choices. Applying all possible data associations to every hypothesis generates exponential growth which needs cutting back shortly after by applying pruning heuristics and fusing similar Gaussians to prevent an explosion of computational complexity. Thus lots of processing time is wasted on creating and destroying new hypothesis which are either unlikely or very similar to the ones that already exist.

A different approach is implemented in the module MultiUKFSelfLocator. Only few new hypotheses are generated periodically at positions with high probability based only on recent sensor information. Those hypotheses are only updated using data that lies inside a certain expectation threshold. Non-linearity in the sensor model is addressed using the unscented transformation technique. Several other approximations and simplifications result in a localization method that is an order of magnitude faster than the previously used particle filter while providing superior localization quality and increased robustness to false positive perceptions (see figure 3.6). A more detailed presentation of the approach and its stochastic soundness is given in [?].

3.4 Distributed World Modeling

Current work includes robust cooperative world modeling and localization using concepts based on multi robot SLAM [20], as well as using probabilistic physics simulation and estimation to improve the robot’s state estimation and odometry information [?]. Keeping track of the robot’s dynamic environment opens the possibility for tactical behavior decisions beyond simple reactive behaviors which are currently in use.

The algorithm described in [20] estimates the robot’s location and the surrounding dynamic objects simultaneously. In this joint modeling of the robot’s state a particle filter estimates the robot’s pose. Clusters of particles are combined into super-particles which map the dynamic environment using a number of Kalman filters. This represents an approximation of FastSLAM and both decreases the integration of odometry error compared to robot-centric local modeling (see figure 3.7) and allows resolving multi-modal localization belief states using shared information. The approach even preserves its SLAM functionality and is able to maintain a robot’s localization based on mapped dynamic obstacles only. A detailed presentation of the approach is presented in [20].

By specifically addressing the heterogeneity of the perceived information and the need to synchronize the estimation between the team of robots the task’s complexity can be
Figure 3.6: Localization of Multiple-Hypotheses UKF compared to previous particle filter solution (which was used in RoboCup 2009). Both are running in parallel on the Nao using the same perception as input. Ground truth is provided by a camera mounted above the field.
reduced to be in the range of applicability on limited embedded platforms. This module’s average runtime on the Nao in the configuration used on the RoboCup 2010 would have been slightly above 20 ms which would not have allowed to keep a frame rate of 15 Hz or even 30 Hz. Especially the switch to a motion frame rate of 100 Hz made its application impossible. Additionally the system is based on the outdated particle filter localization of previous years.

For 2011 parts of this distributed world modeling approach have been integrated with the new localization system described in section 3.3. Since the UKF localization concept does not allow the transformation of a combined estimator according to the Rao-Blackwell theorem, the SLAM aspect can not be transferred in this case directly. In the 2011 code used in the competitions, the SLAM aspects were not fully implemented. The ball and robot modeling is still done in a cooperative way using the approximations described in [20], but there has been no feedback into the localization and only a single maximum-likelihood hypothesis is maintained at each time.

In the code release accompanying this report there is the possibility to choose between local models, which are the result of the local aggregation of percepts (percept-buffering, but without periodically flushing the results into the global model, and the global model itself, which is a fusion of all distributed information. Due to the lack of feedback into a robot’s own localization there are situations where the local model is still to be preferred. Precisely approaching close balls for example requires accurate robot relative information instead of the precise global position of the ball on the field. In the global model, the ball is more precise in global coordinates, but moderate errors in a robot’s localization would have a major impact on the relative positioning, as long as the robot’s pose is not corrected by the distributed information, too.

3.5 Current Research

The modules and algorithms described in the previous sections 3.1 to 3.3 can all be found in the code released together with this document. This section summarizes both current and previous research and experiments for which the transition into the actual soccer
code has not been done yet but is expected to influence the code for RoboCup 2012.

3.5.1 Cooperative EKF-SLAM World Modeling

As an Open Challenge presentation at RoboCup 2011 a prototype system for an EKF-SLAM version of the system described in section 3.4 has been presented. It differs from the FastSLAM version described above in several aspects which will be discussed, but the two most important points are that it is based on the currently used MultiUKFSelfLocator (see section 3.3) and that both the localization and the EKF-SLAM extension together are still fast enough to run on the Nao in real-time.

As in [20], the central idea of the approach is to model the localization and all the dynamic elements of the robot's environment in one full SLAM state, but since the localization is not estimated using a particle filter, the full state cannot be factorized as in FastSLAM. So to build upon the UKF localization described above, the full state needs to be expressed by a mean and covariance matrix in case of EKF-SLAM world modeling. The increase of estimation complexity by the high-dimensional state is countered by aggregation of some of the image processing results into temporary percept-buffers. This has two advantages: On the one hand, highly uncertain single observations can be integrated into different models with decreased uncertainty before forwarding them to the EKF-SLAM core algorithm. This can be used at the same time to filter out false positives which are not confirmed by more than one single observation. Only those temporary models with enough confirmation are forwarded to the distributed modeling and deleted from the local percept-buffer. Deleting them from the percept-buffer guarantees the stochastic independence of different observations originating from the same source and prevents the continuous integration of odometry errors over longer periods of time. On the other hand, a second advantage is the decrease in complexity by using the models from the percept buffers instead of all percepts directly. At the same time, those temporary models or buffered percepts can be shared among a group of robots to cooperatively model their environment.

This is applied to full extend with the dynamic features, i.e. the ball and other robots. A separate localization module, in itself also a buffer integrating information from static, known world features into a localization belief model, is used analogically to those percept-buffers, but the state is not deleted periodically after forwarding the belief to the SLAM part of the algorithm. This localization reflects part of the SLAM state, and changes to this part of the SLAM state are fed back into the localization module's state. Thus the virtual localization measurements used to update the SLAM state are basically the innovation introduced by new static feature observations. Therefore those measurements are still conditionally independent from previous measurements given the current belief state, so the Markov assumption is not violated.

Figure 3.8 illustrates a simple scenario in a simulated environment. The robots in a team share their information for distributed cooperative modeling. Figure 3.8(b) shows the resulting model with 2D covariance ellipses extracted from the full state. In the following, one robot looks down and does not see any static field features any more, and both he and the ball are teleported to another location on the field (see figure 3.9). The use of distributed percepts and the modeling of the own pose together with the ones of other robots and the ball position and velocity allows the robot to not only correct its position, but also its orientation.
Figure 3.8: Scenario with a team of robots looking around and sharing perception information to cooperatively model their environment.

Figure 3.9: Following the situation in figure 3.8 one robot looks down and only sees the ball but no landmarks, and he and the ball are teleported. The shared information however still allows for a correction of both position and orientation of the robot.
This simple experiment shows the potential usefulness of such a combined modeling of a robot’s dynamic environment and its pose in it. RoboCup SPL games contain periods where robots are chasing the ball, approaching it for precise positioning to shoot at the goal, or even dribbling it. During those periods odometry errors are integrated into the robot’s localization if not countered by frequently looking up at static field features to correct the robot’s pose estimation. If looking at the ball also allows the correction of those odometry errors, especially the orientation, this is expected to be a clear advantage.

Future work will be to evaluate and tune the systems behavior in real soccer scenarios in order to be able to apply it in regular games in RoboCup 2012. Further work can be done towards extending this into a multi hypothesis system, but for this more reliable runtime measurements have to be done first.

3.5.2 Active Vision

![Active Vision](image)

(a) Ambiguity close to the opponent goal which can not be resolved by observing a single goal post alone. (b) The optimal viewing direction estimated from the previous particle distribution.

Figure 3.10: Basic idea of active vision: Choosing the viewing direction which improves the current localization the most.

A recent development comes in the form of an active vision module replacing the common strategy to simply move the robots head continuously to cover as much as possible of the robot’s environment. Details of the approach have been presented at the RoboCup symposium 2010 [19]. The basic idea of this new active vision module is to move the camera in a way that is optimal for localization instead of just scanning the environment using predefined trajectories (see figure 3.10). The basis for this is a particle filter localization providing the current belief state as a particle distribution. A commonly used quality criterion for such a belief state X is the entropy $H(X)$. Since the true localization of the robot is unknown, the evaluation of expected consequences of active vision decisions needs to be based on the uncertain belief state. The sensor modeling for the (mostly ambiguous) landmarks (visualized in figure 3.11 for two fixed positions and observations) provides an estimation of the probability distribution $P(y|u, X_t)$ for making observations...
(a) Line crossing observations result in highly multi-modal but focused distributions.

(b) Observing a goal post indicates the field half, but distinguishing between left and right post is not always possible.

Figure 3.11: Measurement probability distribution \(p(y_t|x_t) \) for different observations. Brighter areas correspond to higher probabilities. Illustration is related to \(x \) and \(y \) with probability integrated over \(\varphi \).

\[y \] after executing a motion \(u \) based on the current belief state \(X_t \). Thus a simulation of the localization updates for each possible action can be performed and the one expected to minimize the entropy can be chosen to be executed.

Since such simulations include considering all possible observations for all actions for a current belief state which is expressed with a number of particles, this calculation involves a significant computational complexity. Several approximations were considered, implemented (if practical), and evaluated for approximation quality and speed-up:

- Using clusters instead of separate particles for entropy calculation; neglects the particle variations inside the cluster.
- Precomputing observations in look-up table; introduces discretization error.
- Precomputing the measurement probability for each possible pose and action decision; not practical since the table size exceeds 100MB for sensible resolutions.
- Neglecting areas with low particle density.

The effects on estimation quality are visualized in figures 3.12 and 3.13. The resulting system has an average runtime of 4.2 ms on the Nao. Comparative results of the presented approach against the previously used passive scanning are visualized in figures 3.14 and 3.15 where the robot walked to a series of points.

This module has not been used in RoboCup 2010 nor 2011. The main reason has been the change of the localization strategy described in section 3.3. There are also some additional issues that need to be addressed. Since the underlying particle localization does not take into account negative information the active vision approach tends to fail in kidnapped robot scenarios where the belief state is absolutely wrong. In this case the active vision decision is based on incorrect data and the supposedly optimal decision may look at areas without useful features. Since “not seeing anything” does not change
Figure 3.12: The expected entropy and the real error of particles after executing an action on a penalty kick position facing the center circle.

Figure 3.13: The expected entropy and the real error of particles after executing an action on the removal-penalty’s return position, i.e. on the side line facing the center circle.

Figure 3.14: Localization (green) versus true position (blue) of the robot while walking to a series of target positions.
the particle distribution the belief state stays the same and so does the active vision decision. For this reason the described system needs a monitoring concept switching back to predefined scanning in such failures. Another point where different handling becomes necessary is ball tracking, especially when done conceptually different from the localization e.g. with a Kalman Filter, in which case the active vision decision could not be calculated in a single uniform model.

3.5.3 Colortable-less Image Processing

As described in section 3.1 the current image processing approach provides overall good results in terms of perception rate and computational performance, but relies on manual color calibration. This calibration is both time consuming and susceptible to lighting changes, i.e. it has to be adapted for smaller changes or even be redone completely. This process takes up a considerable time during competitions, and is prone to error when done in a hurry. A further step towards calibration free soccer robots is the implementation of a new image processing approach which does not rely on static color calibration any more, but instead self-calibrates during operation.

The new approach currently under development is based on a similar approach of scanning along few distinct scan lines using state machines. The state changes still have absolute YUV values, gradients and color classification as triggers, but take into account that not all colors can be classified without context. The classification of the field color (green) is done with heuristics about the appearance in the image and the expected range in the color space. Further on, this field color classification is used as a baseline for other colors, whose classification however is taken as ambiguous and decided in each context separately.

First results of an implementation on the Nao promise similar detection rates with a
computational cost in the same range as the previous processing routines. Figure 3.16 shows the classification and detection results of the current state of the implementation.
Figure 3.16: First results of the colorable-less image processor currently under development. For debugging visualization, the field and ball color classification is applied to the whole image. Along the scanlines, field lines are segmented white and marked with red dots in the raw image, while scanned ends of the field are marked in violet. The overall computed field border is indicated in yellow.
Chapter 4

Behavior

Nao Devils as well as previous Dortmund teams implemented behavior mostly by utilising XABSL (Extensible Agent Behavior Specification Language). XABSL was developed in its original form in 2004 using XML syntax [21] in Darmstadt and Berlin and adapted in 2005 to its current C-like syntax and a new ruby-based compiler by the Microsoft Hellhounds.

To this end, behavior is specified by option graphs. Beginning from the root option, subsequent options are activated similar to a decision tree until reaching a leaf, i.e. an option representing a basic skill like “walk” or “execute_special_action” which are parameterized by the calling option. Each option contains a state machine to compute the activation decision based on a number of input symbols provided by other modules (see section 3.1). Part of the soccer playing option graph is shown in figure 4.1 as a demonstration example.

The behavior is divided into a number of playing roles, namely defender, striker, supporter and goalie. Dynamic role switching is performed between the defender, striker and supporter role. Despite of this, the goalie can’t change its role due to the current version of the SPL rules. Team play is based on transmitted soccer action symbols and situational awareness. Details about the structure of the team communication can be found in [7].

While it is possible to design complex behavior using XABSL, several tasks may prove difficult or impossible to specify using XABSL alone, e.g. robust and efficient path planning including obstacle avoidance and also any strategic team behavior extending beyond simple role switching. Therefore several possibilities were investigated to augment XABSL: The remainder of this chapter is structured as follows: Section 4.1 gives a brief overview of the dynamic role management and overall behavior which was successfully applied during the RoboCup 2011 competition. Sections 4.2 and 4.3 demonstrate a description of the technical preconditions on which the current behavior implemented in XABSL is relying on. The last Section 4.4 describes the features of the XABSL Debug Tool which is part of the CodeRelease 2011 and provides a short user guide.
Figure 4.1: XABSL Option graph example.
4.1 Implementation of Collaborating Soccer Agents

During the last couple of years, tremendous effort has been done by team Nao Devils in order to foster the development of more sophisticated and reliable algorithms concerning vision, localization, distributed world modeling and motion control. Since the aforementioned processes are now usually working on a satisfactory level, the task has been more and more shifted to the implementation of deliberated team play which is one of the most important challenges in nowadays RoboCup competitions.

As described previously, team Nao Devils employs XABSL for even complex tasks where every part has to gear into each other such as team play and role management. To this end, a deliberated organization of XABSL source code and its corresponding functionality is needed. The code organization aims to fulfill the following requirements:

- **Limited code complexity**: Limited code complexity in XABSL will ensure a proper understandability of the code so that even new team members will be able to comprehend. This can be obtained by incorporating the following overall design paradigm: XABSL can be seen as a controller where high-level decisions are taken. This emphasizes the need of well-defined XABSL input symbols which model the world state as a precondition. To facilitate this, input symbols can be associated with one abstract proposal that compresses a number of informations representing the agents environment into one statement. For example, an input symbol could express whether the current situation offers a shoot onto the opponent teams goal (so called tactic symbols). A statement like this would be difficult to model within the XABSL code. This counts especially when a set of basic information about the current state has to be combined and formulated into conditional clauses. While this is possible in XABSL, it should be avoided in general.

Moreover, team Nao Devils moved the code for other tasks like path planning and obstacle avoidance to motion modules as well. This relocation of code from XABSL to other modules simplifies behavior modeling and validation for developers in a sense that decision making rather than basic tasks comes into focus.

- **Avoiding redundancies**: The code should be created and organized in a way that allows the reuse of existing implementations as much as possible.

- **Maintain- and expandability**: The organization of the behavior code should facilitate not only the supplementation of additional skills, but also modifications of existing behavior with low efforts. This goal can be accomplished by avoiding dependencies between options and states. To this end, behavior should be fine-grained and loosely coupled so that changes and additions might affect only small parts of the existing code.

- **Debugging**: Debugging behavior of autonomous robots often turns out as an exhausting and error-prone process. The identification of errors can be accelerated by using the XABSL Debug Tool (see also 4.4). It is important to mention that compliance of the code according with the aforementioned requirements will also simplify the development process, identification of problems and elimination of errors.

It is beneficial to organize the XABSL code in logical layers that comprise a hierarchy in order to realize the defined requirements. Team Nao Devils successfully used the structure which is shown in figure 4.2.
• The top level (global functions) contains all XABSL options that implement behavior which is semantically independent from any other option and can be triggered during the game at any time. This applies to the initialization of the robot, triggering of stand-up motions when the robot has fallen over, actions that are performed when the global game state has been changed (initial, ready, set, play) and rule-compliant reaction on penalties.

• The action selection level comprises all options responsible for the decision of taking an appropriate action in a certain situation. The current state of the soccer agent is modeled by input symbols (e.g. distance to the ball, positions of the team mates and the other robots, etc.). This information is used to determine and invoke one specific basic behavior such as shooting, dribbling, passing to team mates and repositioning.

• The layer basic behaviors consists of all skills a robot is able to execute. Each basic behavior implements exactly one well-defined and enclosed task, which however might still consist of a number of different motion commands. Dribbling for example consists of approaching the ball and executing a controlled motion to drive the ball into the desired direction.

• The set of motion control options can be combined to the lowest layer in the hierarchy model. These options are called and parametrized from options on the basic behavior level. They collect motion commands which are directly executed by underlying motion modules. These modules are responsible for the joint movements as well as other outputs such as sound and LEDs.

Despite of the previously described organization of the XABSL code, Team Nao Devils integrated further concepts for the competition in 2011. They concern the collaboration between the robots and are role management, tactic and soccer symbols:
• Changes in the **role management**: A major modification in the SPL was carried out for 2011. The number of players increased from three to four players\(^1\). This forced major changes regarding dynamic role management between the agents. In previous years, three basic roles (keeper, supporter, striker) were defined and one was assigned to each robot according to the position of the ball. Moreover, the roles implied different skills and, e.g. only the striker was able to kick the ball during the game, and the robot which should kick the ball simply got assigned the striker role. The current role management depends on the position of the team mates on the field and whether several parts of the field are covered. The implication between role and associated basic behaviors is dissolved.

• Employing **tactic symbols**: Deliberated tactic symbols contain information about the current state of the game (e.g. whether an agent is the nearest to ball). To calculate this, additional input from the other agents is needed.

• Using **soccer symbols**: Soccer symbols show the action the robot is currently performing, e.g. positioning, passing or kicking. This information is useful in team play since the other agents are able to apply supporting actions. Consider an agent which decides to pass the ball to a better positioned team mate: When the agent is passing the ball, the team mate could move his head to the direction where the ball is expected to roll and is able to react quickly.

In summary, team *Nao Devils* worked mainly on the one hand on an appropriate XABSL code structure and on the other hand on mechanisms to improve team play according to the changed SPL rules in 2011, especially role management. Future work will focus on the integration of machine learning algorithms concerning individual tasks to improve decision making.

4.2 Behavior Coordinate System

Past approaches to behavior planning of team *Nao Devils* were based on the robots current view and thereby on the **robot centric** coordinate system. As described in chapter 2.1 the walking engine applied by team *Nao Devils* is based on the concept of dynamic stability. Thus per definition it is impossible to stop the robot at any time during the execution of a walking motion. This problem is coped with by introducing a preview phase containing the next planned motion which has to be executed to ensure stability. Intuitively this corresponds to the inability to stop all motion while in the process of having one foot lifted to bring forward when waling fast. In every case one has at least to execute the current step to its end. But as a result a change of the walk request can only be executed within a given time, i.e. when the current swinging foot touches the ground and the next footstep is not yet planned into the current motion, thus resulting in a delay. This is especially true for a complete stop, which is applied to position the robot next to the ball. If a behavior is written to only set the target speed to zero the moment the target position is reached, the robot tends to overshoot and is likely to stumble against the ball.

In the past this problem was dealt with by stopping the robot some time before actually reaching the ball. But since the distance traveled after the stopping command is

\(^1\)http://www.tzi.de/spl/pub/Website/Downloads/Rules2011.pdf
given differs depending on the speed and currently executed motion of the robot, finding the right distance was a matter of time consuming manual tuning of the behavior and still resulted in suboptimal results. Since XABSL itself does not address this problem, it is solved by introducing a new coordinate system, called *after preview*, centered on the expected future robot position. Actually this coordinate system is not related to a fixed time interval in the future, but rather to a dynamic offset depending on the executed motion or walking phase, which might also be zero in case of statically stable motions which can be interrupted at any time.

Consequently also the representations available to the XABSL behavior module are no longer the direct localization and tracking outputs, but those are transformed to the *after preview* coordinate system. This allows the behavior to make decisions based on the exact future state of the robot at which those behavior decisions actually have an impact. All intermediate actions till this point will be executed independent of the current decision, so now the decisions will be based on the correct environmental circumstances on which this decision will be acting upon, resulting in more precise and reactive behavior planning.

When visualizing the corresponding representations (marked by “...AfterPreview”) in SimRobot, the origin for drawing first needs to be set using the following command:

```
  vfd worldState origin:RobotPoseAfterPreview
```

4.3 GoTo Motion Command

The motion commands used in previous years till RoboCup 2009 have been based on desired speed vectors which were updated with every behavior execution. This mode of control dates back to the AIBOs which could be controlled like omnidirectional vehicles. Additionally for an AIBO it was sufficient to walk straight to the ball to grab and turn with it. For humanoid robots however the the omnidirectional characteristic of the walking generation is much less distinct, and at the same time a target position close to the ball has to be reached with a certain target orientation which increases the difficulty for trajectory control. While it is possible and also commonly done to generate omnidirectional walking patterns with the walking engine described in section 2.1 for a humanoid robot such as the Nao it is far more convenient to walk straight than it is to walk sideways. This is reflected in the possible walking speeds in each direction. Generating smooth path trajectories following the characteristics optimal for those described walking capabilities is obviously not possible in an intuitive way using a state-based behavior description language such as XABSL.

To overcome those limitations and ultimately to achieve more precision and speed in positioning close to the ball, a more advanced approach to path planning has been done for the *Nao Devils’* robots for RoboCup 2010. The utilized *Dortmund Walking Engine* is based on foot step planning (see section 2.1). In 2010, a basic behavior has been introduced to XABSL allowing the trajectory planning to be done by the walking engine which has much better control and feedback about the executed motion. The motion request has been adapted accordingly to accept a target position and orientation and different XABSL *go_to* commands have been implemented to cover common motion tasks.

In the current implementation of this basic behavior a target position relative to the current behavior reference frame (compare section 4.2) can be specified. Compared to the
version from 2010, especially since there are now four robots on the field for each team, it was necessary to include some kind of obstacle avoidance into our path planning.

Due to the improvements in our world state model (see 3.4) a predictive path planning was made possible. Still, the world around the robot will be changing in a way that is hard to predict, therefore we decided against the planning of a complete path and rather use a potential field, which also does not take away much of our already limited computing power.

With the target position coming from our behavior as a positive potential, the potential field is created. Then Robots from the Robotmap, the goalposts, the ball and, if the robot is a field player, the own penalty area are added as negative potentials.

The potential of robots is, using a gaussian distribution, modeled as an ellipse, which longer axis is aligned parallel to the line that connects the robot with its current target. This enforces a straighter path around the obstacle than it would be possible with a circular modeling of the other robots, resulting in an overall higher speed around an obstacle.

Within this potential field a path is constructed by using the gradient at the robot’s position, moving a fixed length into that direction and repeating the process several times, or until the destination is reached.

Along this path, a smoothed trajectory for the PatternGenerator (see section 2.1) is created, that fulfills the following criteria:

- move as fast as possible towards the target,
- keep the target and obstacles in sight and
- keep the motion as smooth as possible.

A potential field itself, if used for path planning, has some drawbacks, if only the resulting force is used as the direction for the robot to walk, especially the existence of local minima and the possibility of flickering trajectories.

The first problem is solved by simply merging two obstacles, that could create a local minima into one bigger obstacle. The second problem is implicitly solved by constructing the path and smoothing out the actual motion after that.

One of the remaining problems is the possibility that the robot switches the side on that he wants to avoid the obstacle, slowing down the whole evasion process. Another problem is the inability to avoid large walls of obstacles since the path planning does operate only locally.

Despite that, in real game situations the time to reach the robots destination when faced with obstacles could be reduced significantly.

The path through the potential field can be visualized using SimRobot. After setting the origin for drawing to the behavior coordinate system as described in section 4.2, the following command will display the corresponding drawing as can be seen in figure 4.3:

```
vfd worldState representation:Path
```

4.4 Debug Tool

Debugging programmed code is essential to identify flaws and finding solutions to errors. This is not only true for the code of the robotic framework, but also for the behavior
code written to decide which action is most suitable regarding the current situation. As described in section 4, team Nao Devils uses the XABSL programming language to implement the soccer behavior. The written and compiled code of the behavior can be executed in a simulation environment or directly on the robotic hardware.

Different kinds of debugging tools are an essential part of every programming suite allowing to stop code during execution and get step by step information about the program state and variables. This concept is rather practical for debugging behavior using the simulator. Since the simulator runs both the robot code and the world simulation the whole simulation can be stopped to have a look at the current state and decisions. This allows to use the simulator to step frame by frame through the world state. To debug the behavior with the simulator SimRobot, a view the current XABSL tree containing XABSL symbols and variables (figure 4.4) can be displayed allowing a frame-by-frame forward simulation. Stepping back is not possible since the framework allows no rewind.

The used simulator is a physical simulation based on the Open Dynamics Engine (ODE). Therefore, the simulation of even one robot is a rather time consuming process resulting in a simulation slower than real-time on most modern standard PC platforms. Simulating a complete match including six robots decreases the framerate to numbers that make a user observation rather difficult. Even if the simulation would run in real time the physical simulation is insufficient to model the real world exactly. Since small situational differences can result in big differences in behavior decision the simulation model is not satisfactory enough to test soccer behavior more complex than basic behavior. Thus the most important behavior debugging can not be done in the simulator but on the real robot.

Debugging code on the real robot is quite different. The use of a breakpoint concept to stop the program during execution would stop the motion of the robot resulting most likely in a fall of the robot. Therefore most debugging in autonomous robotics involves monitoring rather than breakpoint approaches. The program execution is supervised with the help of a remote connection that broadcasts information about the program state, sensor input and decisions. In contrast to the breakpoint approach this method allows for
a debugging in real game situations involving other autonomous robots but is prohibited during tournament game play. Unfortunately the nature of the supervision process results in a delay of information. Therefore the supervision cannot be matched exactly with the current field situation. In addition the broadcast connection results in an disturbance of the normal code execution. In general the disturbance is minor in scope but can result in timing problems. The result would be a stuttering of the robot which changes the state that should only be monitored. Especially for debugging of robot behavior supervision of the written code is a rather inadequate solution.

Since execution directly onto the robot is of special interest for behavior development team Nao Devils developed a tool allowing a different debugging concept combining the convenience of simulator debugging with code testing on the real robot. The concept is based on logging each behavior decision during the execution. To allow a later analysis of the logged data the corresponding sensor information is also stored in addition to each decision. Since the complete sensor information, including the camera pictures, would result in an unmanageable amount of data, only the resulting information about the world model are saved.

With this stored data a playback of all behavior decisions and a debugging of decisions on given data can be done. But an analysis of the world model is not possible, since only the modeled gamestate is stored and cannot be compared with reality. But to allow even that comparison a video camera can be used to record the real gamestate in a movie file.

Based in these concepts team Nao Devils developed a tool with following features:

- The robot logs its internal state machine, the required symbols and hardware commands (motion, LED-Requests etc.) once per frame.
- A graphical user interface allows for an easy reading of the logfile and shows the input/output symbols and current XABSL state tree.
• A 2D field view shows the modeled robot position, direction and velocity, the ball position and the team mate positions.

• A video can be loaded and displayed. The time is synchronized manually by matching known state information to the video file.

• The behavior log can be played back, stopped, stepped through frame by frame and rewound to interesting positions.

Figure 4.5: XABSL Debug Tool.

The tool is implemented using QT C++ as a platform independent standalone tool. The written log (.xlg) is loaded line by line and a parser extracts the information of the symbols and the state machine. The parser is specialized to interpret XABSL logs.
but due to clearly defined interfaces between the interpreter and the different widgets an adaptation to another behavior language would be possibly by changing the parser. Additional debug views specialized for other description languages can also be added easily.

The progress bar allows an intuitive navigation within the log file. The current frame information is shown using the following widgets (see figure 4.5):

- **Input/output Symbols-Treeview Widget**: Displays an overview with all logged symbols and their values represented in a tree. It’s possible to select specific symbols to display more detailed information.

- **Detailed Symbols Widget**: All symbols selected in the Symbols-Tree-View are shown as a table here, so that the user has a quick overview about the needed symbols. The columns represent the symbol names, the rows represent different frames. By highlighting current frame the user can see the chronological history of the symbols. This is useful, if the user wants to judge the stability of a given symbol.

- **Worldstate Widget**: A 2D-Field is painted, displaying the current modeled robot position, direction, velocity and the latest ball position. This overview allows the user to judge the internal robot world model and compare it to the reality represented by the video file.

- **Video Widget**: Display of the video file synchronized to the internal robot state.

- **Control Widget**: The user can navigate within the logfile including jump forward, back step by step, play slow-motion etc.

- **Statemachine Widget**: This Widget shows the current option-state path.

All this is designed to enable a behavior designer to replay all the states and analyze the decisions a robot made. It is therefore easy to find out,

- whether a decision was based on a false perception: If the robot would have correctly seen a certain feature, it would have behaved correctly. This kind of error results from either a false perception or wrong interpretation and modeling.

- whether the decision was based on false decisions made on correct knowledge: The user observes a gamestate which resulted in an undesired decision. If the internal world model matches the real world the wrong decision is a result of a decision error or a coding bug.

The tool is still in an early state of development missing features such as synchronizing log files of different robots to debug team decisions. But still the debugging tool has proven helpful in replaying gamestate decisions and allowing expert programmers to judge and debug errors thereby improving the written XABSL code. The most useful information was thereby gained from actual tournament games which were otherwise impossible to supervise due to the given rules.
Chapter 5

Conclusion and Outlook

The Nao Devils Dortmund is a team from the TU Dortmund University with roots in several other teams which have competed in RoboCup competitions over the last years. This team report covered a short overview of the main ideas and concepts that were employed and successfully used in RoboCup2011 where the Nao Devils were able to take the 2nd place with 36 obtained goals in 9 games.

One major change in the SPL rules this year was the increase of the number of players per team by one. This greatly affected the development of team behavior with special respect to the role management. To this end, the role management has been completely rewritten from the scratch. It contains a paradigm change from a simple, classical role management with three possible roles (striker, supporter and goalie) and their associated behavior to a more sophisticated zone-depending role management that makes team play more flexible. Experience from last years competition has also revealed that a lot of tackling is involved during games. This emphasised the need of a deliberared strategy to deal with very situations. The Nao Devils were successfully able to speed-up basic tasks such as approaching and kicking the ball by improving underlying Motion and Cognition processes with respect to precision and stability.

Another major challenge was the integration of visual robot detection that complemented the awareness of opponent robots. This allowed the use of key aspects of the distributed world modeling approach that was briefly proposed. This helped to enhance strategical positioning, advanced tactical play of the robots and team ball localization. In addition part of the focus will still lie on motion generation, refining and extending the existing walking algorithms and further develop the path planning and motion execution.
Appendix A

Getting Started

A.1 Setting up the development environment

The framework can be compiled on Windows and Linux operating systems.

A.1.1 Windows

1. Install Visual Studio 2008 Professional or Visual Studio 2010.

2. Install Cygwin 1.7.5_1 or higher. Use the 'install from internet’ option (see figure A.1). When coming to the screen “Cygwin Setup - Select Packages” switch the view to “Full” and add the following additional packages (see figure A.2): bash, libxml2, libxslt, make, openssh, python, ruby, rsync.

3. Furthermore, the following directories have to be added to the PATH variable in your system environment: C:\cygwin\lib and C:\cygwin\bin (if you have not installed cygwin into that directory, change it accordingly).

4. Unzip the code release source package to a directory of your choice.

5. Set up the cross compiler: Copy the folder <coderelease directory>/Util/i586-opennao-linux-gnu into the Cygwin directory (e.g. /home/user/ or /usr/cross compiler). Open the file ‘g++’ which is located at <coderelease directory>/Make/crosstool and the change the path of CXX to the cross compiler directory like that: CXX=/usr/i586-opennao-linux-gnu/bin/i586-opennao-linux-gnu-g++.exe.

6. You should now be able to compile code for the robot. Open NDevs.sln, it includes several projects for Simulator, libbhuman and the ndevils main program.

7. Additional software is needed to connect with and load files onto the robot. We recommend using Putty (http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html) as a remote console interface and WinSCP (http://winscp.net/eng/download.php) as SCP client software.

8. If you want to change the parameters of the Dortmund Walking Engine you may need Matlab 2007a or higher including the Control System Toolbox.
Figure A.1: Cygwin Setup.

Figure A.2: Installing additional Cygwin packages.
A.1.2 Linux

You can use any Linux distribution as well to compile the robot code. Simply unzip the source package into a directory of your choice. Like in the windows setup, bash, ruby, gnu make, ssh, rsync, an xslt parser software and python have to be installed. Adapt the g++ file as described at the windows section. Switch to the Make directory of the coderelease directory and run make (e.g. with the parameters <Nao|libbhuman|Behavior|SpecialActions> Config=<Debug|Release>). The Linux makefiles for each project are generated automatically with zbuild. Note that the Simulator can not be compiled under Linux Platforms.

A.1.3 Build configurations

Our code release consists of two different build configurations, RELEASE and DEBUG. The DEBUG configuration makes it possible to connect with SimRobot. The actual state of the robot can be shown and modified. Running the robot with the DEBUG configuration will result in frame drops which means that the Cognition and Motion thread can not be executed stable at 33 Hz and 100 Hz respectively. Use RELEASE when high performance is required. The RELEASE configuration ignores every source which is needed for debugging except Profiling features.

A.2 Setting up the robot

Setting up the robot to run the newly compiled code consists of several steps. The memory sticks of the Nao V3+ robots needs to be flashed once for each robot as described in the following section. Each time a different user works with a robot he needs to set up his configuration (see section A.2.2). Section A.2.3 and A.2.4 finally describe how to run and debug code on the robot.

A.2.1 Preparing the memory stick

Linux is required in order to set up a new stick for the Nao robot. This only needs to be done once per robot.

1. Download opennao-robocup-1.6.13-nao-geode.ext3.gz from the Aldebaran website and copy it into /images of the Install folder (or use -i [image.ext3]).

2. Plug the flashstick in your pc USB socket.

3. Run ./flash-and-install.sh as an administrator, e.g.: sudo ./flash-and-install.sh under Ubuntu.

The script uses Connman to connect the wireless LAN. Therefore, a few more steps are needed to configure the wireless connection:

1. After flash-and-install.sh is executed, the Nao should be booted with the new USB-stick and a connected network cable.

2. Press the chest button of the Nao in order to get the current IP of the robot.
3. Open the IP with a browser from a PC which is in the same network as the robot (user:nao pw:yourpass).

4. Use the webinterface to change the robot’s name and connect to your local wireless LAN.

5. Connect to the robot via ssh (user:root pw:yourpass) and execute ./firstStart.sh which removes unneeded services (not including the webinterface) and changes the autoload.ini. (This process can be reverted, by executing ./reset2Aldebaran.sh)

6. Reboot the Nao. The setup process is finished.

A.2.2 Copying your current code and configuration to the robot

Multiple users working with the same robot often need different configurations or code, so it is important to have an automated process to make sure every necessary file on the robot is up to date. This copyfiles script makes it easy to set up the robot. All needed files are copied into the designated directories.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>-r <robotname></td>
<td>set robotName</td>
</tr>
<tr>
<td>-u <username></td>
<td>set the username (name of the configuration files directory)</td>
</tr>
<tr>
<td>-l <location></td>
<td>set location (e.g. useful for different color tables)</td>
</tr>
<tr>
<td>-t <color></td>
<td>set team color to blue or red</td>
</tr>
<tr>
<td>-p <number></td>
<td>set player number. Note that two parallel operated robots should not have the same robot number.</td>
</tr>
<tr>
<td>-d</td>
<td>delete remote cache first</td>
</tr>
</tbody>
</table>

Table A.1: Parameters of the copyfiles script

Examples: copyfiles.sh [Debug|Release] [<IP address>|-m n <IP address>*] (i.e. ./copyfiles.sh Debug 134.102.204.229 -p 1).

A.2.3 Starting and stopping the robot

Starting and stopping the NAO can be proceeded as follows:

1. Switch on the robot (press the chest button).

2. Wait until the eye LEDs are switched off.

3. Open Putty and connect to the robot.

4. The framework and NaoQi are booted by default. The connection with SimRobot will work better if you reboot both. To shut down / boot up the framework type ./ndevis stop or ./ndevis start respectively. Starting/Stopping NaoQi is done by typing nao stop / nao start. All Boot Scripts are located at /root on the stick.

5. Type halt to shut down the robot.
A.2.4 How to connect with the robot and debug

SimRobot can be used to connect with the robot. Simply, you have to modify the file `connect.con` which is located under `<Coderelease>/Config/Scenes`. Replace the IP address in the command `sc Remote 192.168.1.2`. Boot up SimRobot and open the Scene `RemoteRobot.con`.

The following table shows a set of basic Simulator commands which are useful for debugging purposes.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>log start</td>
<td>starts recording a logfile.</td>
</tr>
<tr>
<td>log stop</td>
<td>stops recording a logfile.</td>
</tr>
<tr>
<td>log save <filename></td>
<td>save the actual log to a specified file. The saved file is located at <code><Coderelease>/Config/Logs</code>.</td>
</tr>
<tr>
<td>vi image raw</td>
<td>Transmits uncompressed raw images from the robot to the Simulator.</td>
</tr>
<tr>
<td>vid raw representation:</td>
<td>draws recognized elements on the image view. It is useful in order to</td>
</tr>
<tr>
<td><class>: <element></td>
<td>determine if the robot detects balls, goal posts etc.</td>
</tr>
<tr>
<td>vf worldState</td>
<td>creates a worldState view on which additional 2D information can be drawn</td>
</tr>
<tr>
<td>vfd worldState</td>
<td>draws elements on the worldState view. This can be e.g. ball percepts,</td>
</tr>
<tr>
<td><class>: <element></td>
<td>robot poses etc.</td>
</tr>
</tbody>
</table>

Table A.2: Parameters of the copyfiles script

A detailed description of SimRobot and its commands can be found in [7] chapter 8. Please consult the manual for creating a colorable as well.

A.2.5 Using the XABSL Debug Tool

The XABSL debug logging can be activated in the 'behavior.cfg' file which can be found on the robot under `['your Config]/Locations/['your location]'`. Now create the directory for the log(s) : the debug tool expects a 'Logs' folder in your config folder on the robot. As the last step add logging for your XABSL symbols by editing the respective .cpp file as following:

- For static symbols (e.g. constant symbols or field symbols) add a method `debugLogStatics()` to your c++ symbol files (see Listing A.1).
- For every-frame-updated symbols add a `debugLog()` and `debugLogPrintTitle()` method to your c++ symbol files (see Listing A.2).
/** Static Debug Symbol Logging **/

```cpp
void ConstantSymbols::debugLogStatics()
{
    DebugSymbolsLog::printStaticSymbol("constants.pi", pi);
    DebugSymbolsLog::printStaticSymbol("constants.max_pan", maxPan);
    DebugSymbolsLog::printStaticSymbol("constants.min_pan", minPan);
    // ... and so on
}
```

Listing A.1: "static symbol logging"

/** ColumnCaption -- only once per log **/

```cpp
void LocatorSymbols::debugLogPrintTitle()
{
    DebugSymbolsLog::print("locator.pose.x");
    DebugSymbolsLog::print("locator.pose.y");
    DebugSymbolsLog::print("locator.pose.angle");
    // ... and so on
}
```

/** Every Frame Logging **/

```cpp
void LocatorSymbols::debugLog()
{
    DebugSymbolsLog::print(robotPose.translation.x);
    DebugSymbolsLog::print(robotPose.translation.y);
    DebugSymbolsLog::print(getPoseAngle());
    // ... and so on
}
```

Listing A.2: "every frame symbol logging"
Appendix B
Framework

The German Team Framework \[6\] was chosen to be the basis for all code being written. Since both B-Human and the Microsoft Hellhounds were using variations or predecessors of this framework large amounts of already available modules (e.g. ImageProcessing, BallModelling) could be ported rapidly and with ease. A more detailed description of the most recent version of this framework can be found in \[7\].

The framework itself is based on a modular structure. A module can be seen as a possible solution for a certain task. This could either be self-localization, image-processing or something else. Modules can be exchanged at runtime which simplifies the comparison and evaluation of different solutions for a specific task. The coupling between the modules is created by so called representations which can either be required or provided by a specific module. The modules itself are grouped in so called processes. For now there exist only two processes. The motion process encapsulates all modules concerning the generation of motion trajectories. This includes for example the WalkingEngine or the SpecialActionEngine. The cognition process however contains modules for imageprocessing, localization and behavior control. The data exchange between the framework processes is done via means of Inter-Process Communication. For now the data is exchanged via a shared-memory system.

B.1 Modules

As mentioned before modules are the essential elements of the framework. A module consists of three parts:

- the module interface
- its actual implementation
- a statement that allows to instantiate the module.

The module interface defines the name of the module, the representations required by the module to operate and the representations it provides/modifies. This interface basically creates a basis for the actual implementation. An example module definition can be seen in listing \[B.1\]
The actual implementation of the module is done in a class derived from the module definition. The implementation has class-wide read-only access to the required representations. For each provided representation an update method with a reference to the representation as parameter has to be implemented (e.g. `void update(BallModel&)`).

At last the module needs to be instantiated, this is done via a call to `MAKE_MODULE`, which takes a category as its second parameter allowing to specify a category for debugging purposes. Listing B.2 shows as an example how to implement an module from the previous module definition.

B.2 Representations

Representations are used to exchange data between modules. They are essentially lightweight data structures, which only contain the necessary information needed and provided by a module. Additionally all representations must implement an serialization interface called `Streamable` which on the one hand enables the exchange of data between framework processes and on the other hand is used for debugging purposes. Listing B.3 shows an example Representation.

B.3 Origin of Modules

The code released together with this report is based on the most recent version of the GermanTeam framework originating from the code release by BHuman in 2009. As described earlier this is used due to the Nao Devils’ history both in the GermanTeam and the BreDoBrothers. Most of the code related to infrastructure and framework-internals is left unchanged. The modules containing cognition and motion algorithms however are mostly developed in Dortmund. An overview about the origins of these modules is given in tables B.1 and B.2. Infrastructure modules, e.g. those containing the code to obtain images and sensor readings or to read or write joint angles, are omitted in those tables.
/** Module Implementation **/
/** Implement DemoImageProcessor derived from Module Definition **/
class DemoImageProcessor : public DemoImageProcessorBase {
 void update (BallModel& pBallModel) {
 // update the BallModel representation
 }
 void update (PointsPercept& pPointsPercept) {
 // update the PointsPercept representation
 }
};

/** Module Instantiation **/
/** Instantiate Module DemoImageProcessor in category "ImageProcessing" **/
MAKE_MODULE (DemoImageProcessor, ImageProcessing)

Listing B.2: "Example module implementation and instantiation"

Modules with origin in “Bremen” are kept from the BHuman code release for various reasons, because they were either kept from the BreDoBrothers cooperation (e.g. the ParticleFilterBallLocator), equivalent in function (as the RobotModelProvider [7] compared to the EgoModelProvider [26]) or providing new functionality (as the ObstacleModelProvider for the sonar filtering). Origin “Dortmund” indicates Nao Devils’ developments or late Microsoft Hellhounds code. “GermanTeam” marks those parts of the code which were not necessarily in this exact module form, but nevertheless date back to 2005 or before and were developed together by the GermanTeam of which both Bremen and Dortmund have been members.
class BallPercept : public Streamable
{
 /** Streaming function
 * @param in streaming in
 * @param out streaming out
 */
 void serialize(In* in, Out* out)
 {
 STREAM_REGISTER_BEGIN();
 STREAM(positionInImage);
 STREAM(radiusInImage);
 STREAM(ballWasSeen);
 STREAM(relativePositionOnField);
 STREAM_REGISTER_FINISH();
 }

public:
 /** Constructor */
 BallPercept() : ballWasSeen(false) {}
 /**< The position of the ball in the current image */
 Vector2<double> positionInImage;
 /**< The radius of the ball in the current image */
 double radiusInImage;
 /**< Indicates, if the ball was seen in the current image. */
 bool ballWasSeen;
 /**< Ball position relative to the robot. */
 Vector2<double> relativePositionOnField;
};

Listing B.3: "Example module implementation and instantiation"
<table>
<thead>
<tr>
<th>Module</th>
<th>Function</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArmAnimator</td>
<td>Controls arm movement in Dortmund Walking Engine</td>
<td>Dortmund</td>
</tr>
<tr>
<td>HeadMotionEngine</td>
<td>Controls head movements</td>
<td>GermanTeam</td>
</tr>
<tr>
<td>GroundContactDetector</td>
<td>Checks ground contact (used in Inertia Matrix)</td>
<td>Bremen</td>
</tr>
<tr>
<td>InertiaMatrixProvider</td>
<td>Calculates the basis for the Camera Matrix (previous CameraMatrix calculation dates back to the GermanTeam)</td>
<td>Bremen</td>
</tr>
<tr>
<td>LimbCombinator</td>
<td>Puts leg- and armjointrequest from Dortmund Walking Engine together</td>
<td>Dortmund</td>
</tr>
<tr>
<td>MotionCombinator</td>
<td>Combines requests from all motion modules to create a final joint request</td>
<td>GermanTeam</td>
</tr>
<tr>
<td>MotionSelector</td>
<td>Switches between motion types</td>
<td>GermanTeam</td>
</tr>
<tr>
<td>NaoKinematic</td>
<td>Inverse kinematic chain calculations</td>
<td>Dortmund</td>
</tr>
<tr>
<td>PatternGeneratorModule</td>
<td>Creates the footsteps for Dortmund Walking Engine</td>
<td>Dortmund</td>
</tr>
<tr>
<td>RequestTranslatorModule</td>
<td>Creates a pattern request from desired movement speed/target</td>
<td>Dortmund</td>
</tr>
<tr>
<td>RobotModelProvider</td>
<td>Provides informations about the robot model (this module is equivalent to the EgoModelProvider \cite{26} and kept instead of porting the latter)</td>
<td>Bremen</td>
</tr>
<tr>
<td>SpecialActions</td>
<td>provides special action (hardcoded motions)</td>
<td>GermanTeam</td>
</tr>
<tr>
<td>ZMPIPControllerModule</td>
<td>Controls ZMP while walking (older version)</td>
<td>Dortmund</td>
</tr>
<tr>
<td>ZMPIPControllerModule2009</td>
<td>Controls ZMP while walking (in use)</td>
<td>Dortmund</td>
</tr>
<tr>
<td>ZMPModelProvider</td>
<td>Calculates ZMP used in Dortmund Walking Engine</td>
<td>Dortmund</td>
</tr>
<tr>
<td>Module</td>
<td>Function</td>
<td>Origin</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>CameraMatrixProvider</td>
<td>Provides the transformation from camera to the robot coordinate frame (a slight change in the functionality requires the InertiaMatrix now)</td>
<td>GermanTeam</td>
</tr>
<tr>
<td>MSHImageProcessor</td>
<td>Provides the basic scanning routines described in section 3.1</td>
<td>Dortmund</td>
</tr>
<tr>
<td>BodyContourProvider</td>
<td>Provides a projection of the body contour to the camera image</td>
<td>Bremen</td>
</tr>
<tr>
<td>BallPerceptor</td>
<td>Verifies the detection of possible balls given certain ball candidates</td>
<td>GermanTeam</td>
</tr>
<tr>
<td>NDLLineFinder2</td>
<td>Finds field lines, crossings and the center circle as described in section 3.2</td>
<td>Dortmund</td>
</tr>
<tr>
<td>NDContextProcessor</td>
<td>Extends the information of certain percepts using context of others</td>
<td>Dortmund</td>
</tr>
<tr>
<td>ParticleFilterBallLocator</td>
<td>Estimates the ball position (used since BreDoBrothers 2008)</td>
<td>Bremen</td>
</tr>
<tr>
<td>ObstacleModelProvider</td>
<td>Models obstacles in a local coordinate system based on sonar readings</td>
<td>Bremen</td>
</tr>
<tr>
<td>UKFSampleTemplateGenerator</td>
<td>Provides regions of high localization probability based on recent percepts only</td>
<td>Dortmund</td>
</tr>
<tr>
<td>MultiUKFSelfLocator</td>
<td>Self localization of the robot as described in section 3.3</td>
<td>Dortmund</td>
</tr>
<tr>
<td>Predictor</td>
<td>Transforms certain models into a coordinate system based on the point at which behavior decisions take effect (see section 4.2)</td>
<td>Dortmund</td>
</tr>
<tr>
<td>BehaviorControl</td>
<td>XABSL behavior control (see section 4)</td>
<td>GermanTeam</td>
</tr>
</tbody>
</table>
Appendix C

Walking Engine Parameters

In this section the most important parameters to control the Walking Engine are described. They can be found in the file `<coderelease directory>/Config/walkingParams.cfg`. Some parameters needed by the ZMP/IP-Controller are located in the file `<coderelease directory>/Util/Matlab/NaoV3.m`. The Matlab script `writeParamsV3.m` calculates the values used by the ZMP/IP-Controller using the parameters in this file and stores the results to `<coderelease directory>/Config/Robots/<robot name>/ZMPIPController.dat`. To execute the script open Matlab, change the current directory to `<coderelease directory>/Util/Matlab` and enter the following command:

```matlab
writeParamV3(NaoV3('robot name'))
```

All values are expressed in SI units, unless otherwise stated.

C.1 File walkingParams.cfg

The file walkingParams.cfg consists of the following parameters:

footPitch

To avoid hitting the ground with the forward section of the foot an offset is applied to the foot rotation around the y axis. The added value reaches its maximum at the middle of the single support phase. The maximum can be set using `footPitch`.

xOffset

The center of the feet can be shifted along the x axis by setting this value unequal to 0. This offset is constant for the whole walk.

stepHeight

Maximum z position of the foot during the single support phase, see section 2.1.4.
sensorControlRatio

The sensorControlRatio is multiplied with the difference between the target ZMP and the measured ZMP. Legal values are \([0 \ldots 1]\), where 0 means ‘no sensor control’ and 1 ‘full sensor control’.

doubleSupportRatio

Proportion of the double support phase during a step.

crouchingDownPhaseLength, startingPhaseLength, stoppingPhaseLength

These values define the duration of the transitions between a walk and special actions.

armFactor

The movement of an arm depends on the x coordinate of the opposite foot. The x coordinate is multiplied with armFactor and applied to the ShoulderPitch.

arms1

This value is the angle of ShoulderRoll for both arms. It is constant during the walk.

zmpSmoothPhase

To avoid hard sensor feedback during transitions from special actions to walk and vice versa the ZMP error is faded in and out. This parameters sets the length in frames of this phase.

maxSpeedXForward, maxSpeedXBack, maxSpeedYLeft, maxSpeedYRight, maxSpeedR, maxSpeedXForwardOmni

These values define the maximum speed. All requests sent to the Walking Engine are clipped to these values.

stepDuration

The PatternGenerator defines the footsteps based on two single support phases and two double support phases. The duration of all together is the stepDuration.

footYDistance

Distance between the feet.

stopPosThresholdX, stopPosThresholdY, stopSpeedThresholdX, stopSpeedThresholdY

Stopping a walk and executing a special action is only possible when the Walking Engine sets a flag which indicates that it does not compromise the stability. The Walking Engine uses this 4 indicators to check if the speed of the center of mass is low enough and the position within a stable range.
zpLeft, zmpRight

Position of the target ZMP in the (left/right)foot coordinate system when the robot stands on one leg.

outFilterOrder

Before sending the angles to the robot they are low-pass filtered. This parameter defines the order of the filter.

tiltControllerParams, rollControllerParams

Gains for the tilt/roll PID controller params implemented in the module GyroTiltController.

sensorDelay

The sensor control relies on a good comparison between the measured ZMP and the target ZMP. In most cases the measurements are some frames old and must be compared with the target of the same frame.

halSensorDelay

Delay of the hal sensors used to measure the joint angles.

maxFootSpeed, fallDownAngle

The Walking Engine has an integrated check for instabilities to avoid breaking joints. Due to the sensor control the robot can react in an unexpected way resulting in very fast movements. The maximum speed of the feet can be limited by using maxFootSpeed. Additionally all movements are stopped immediately when the robot exceeds the maximum tilt or roll angle defined by fallDownAngle.

polygonLeft, polygonRight

As mentioned in section 2.1.3 the reference ZMP is calculated using a Bézier curve. This parameters define the y coordinates of the control points in the corresponding foot coordinate system.

offsetLeft, offsetRight

Due to high torques acting on the joints during the single support phase large angle errors can be observed. To compensate the effects a constant offset is added to each leg joint which can be configured using these parameters.

walkRequestFilterLen

To avoid abrupt speed changes a low-pass filter can be activated to filter the incoming speed requests. A value of 1 means deactivated.
accXAlpha
Gain controlling the acceleration sensor feedback (see section 2.1.2).

Besides the low-pass filter there is an other way to limit speed changes. If the acceleration resulting from the new speed request is higher than maxAcc only maxAcc is applied until accDelay frames are elapsed.

speedApplyDelay
This is the third way to limit speed changes. If a speed change has been detected further speed changes are ignored for speedApplyDelay frames.

legJointHardness
The stiffness parameter for the leg joints. The stiffness cannot be set for each leg separately.

heightPolygon
This five values are multiplied with stepHeight to get the z coordinates of the control polygon for the swinging leg as explained in section 2.1.4

standRollFactor
A factor especially for standy on one leg. Instead of reaching he target center of mass position by translating the body, this factor allows to reach the target by rotating the body.

C.2 File NaoNG.m
The following parameters can be found in the file NaoNG.m:

g
The Gravity.

z_h
Target height of the center of mass over the ground.

dt
Length of one frame.

R
Controller-Parameter R [13].
N
Duration of the preview phase as explained in section 2.1.2.

Qx
Controller-Parameter Qx [13].

Qe
Controller-Parameter Qe [13].

Ql
Gain for calculating L [13].

RO
Gain for calculating L [13].

path
Path to the file ZMPIPController.dat.
Bibliography

61

