Online Resource 1: Non-linear models

This supplementary file details several common non-linear models. Equations and parameter definitions are given in Table A1.1, and the results of fitting these models to experimental data are shown in Table A1.2 and Figure A1.1.
Table A1.1: Parameters for several non-linear developmental models

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharpe</td>
<td>$\rho = \frac{T e^{\left(\phi - \left(\Delta H_A^/T\right)\right) / R}}{1 + e^{\left[\left(\Delta S_A - \Delta H_A^/T\right) / R\right]} + e^{\left[\left(\Delta S_L - \Delta H_A^*/T\right) / R\right]}}$</td>
<td>Sharpe and DeMichele 1977</td>
</tr>
<tr>
<td>T</td>
<td>Absolute temperature (Kelvin)</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Boltzmann constant</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Planck’s constant</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Gas constant</td>
<td></td>
</tr>
<tr>
<td>ϵ_e</td>
<td>Relative enzyme concentration</td>
<td></td>
</tr>
<tr>
<td>ΔH_A^*</td>
<td>Enthalpy of activation</td>
<td></td>
</tr>
<tr>
<td>ΔH_A</td>
<td>Difference in enthalpy of activation between first inactive and active enzyme states at equilibrium</td>
<td></td>
</tr>
<tr>
<td>ΔH_H</td>
<td>Difference in enthalpy of activation between active and second inactive enzyme states at equilibrium</td>
<td></td>
</tr>
<tr>
<td>ΔS_A^*</td>
<td>Entropy of activation</td>
<td></td>
</tr>
<tr>
<td>ΔS_A</td>
<td>Difference in entropy of activation between first inactive and active enzyme states at equilibrium</td>
<td></td>
</tr>
<tr>
<td>ΔS_H</td>
<td>Difference in entropy of activation between active and second inactive enzyme states at equilibrium</td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>Simplying parameter, equal to $\Delta S_A^* + \ln\left(\epsilon_e / h\right)$</td>
<td></td>
</tr>
<tr>
<td>Logan</td>
<td>$\rho = \psi \cdot \left(e^{rT} - e^{(rT_{max} - (\delta_{max} - T) / \Delta T)}\right)$</td>
<td>Logan et al. 1976</td>
</tr>
<tr>
<td>T</td>
<td>Air temperature – minimum temperature threshold</td>
<td></td>
</tr>
<tr>
<td>δ_{max}</td>
<td>Lethal maximum temperature</td>
<td></td>
</tr>
<tr>
<td>ΔT</td>
<td>Difference between maximum and optimal temperatures</td>
<td></td>
</tr>
<tr>
<td>ψ</td>
<td>Developmental rate at a given base temperature above the minimum developmental temperature</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>Rate increase up to optimal temperature</td>
<td></td>
</tr>
<tr>
<td>Holling</td>
<td>$\rho = \psi \cdot \left(\frac{T^2}{T^2 + D^2} - e^{(\delta_{max} - T) / \Delta T}\right)$</td>
<td>Hilbert and Logan 1983</td>
</tr>
<tr>
<td>T</td>
<td>Air temperature – minimum temperature threshold</td>
<td></td>
</tr>
<tr>
<td>δ_{max}</td>
<td>Lethal maximum temperature</td>
<td></td>
</tr>
<tr>
<td>ΔT</td>
<td>Difference between maximum and optimal temperatures</td>
<td></td>
</tr>
<tr>
<td>ψ</td>
<td>Developmental rate at a given base temperature above the minimum developmental temperature</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Fit parameter</td>
<td></td>
</tr>
<tr>
<td>Lactin</td>
<td>$\rho = e^{rT} - e^{(rT_{max} - (\delta_{max} - T) / \Delta T)} + \lambda$</td>
<td>Lactin et al. 1995</td>
</tr>
<tr>
<td>T</td>
<td>Air temperature – minimum temperature threshold</td>
<td></td>
</tr>
<tr>
<td>δ_{max}</td>
<td>Lethal maximum temperature</td>
<td></td>
</tr>
<tr>
<td>ΔT</td>
<td>Difference between maximum and optimal temperatures</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>Rate increase up to optimal temperature</td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td>Fit parameter</td>
<td></td>
</tr>
</tbody>
</table>
Table A1.2: Goodness of fit of models to empirical *N. bisignatus* developmental data, using two metrics of model fit: R^2, the coefficient of determination or nonlinear regression, for linear or nonlinear models, respectively, and RSS, the residual sum of squares. High R^2 and low RSS indicate good model fit. Model fit analysis conducted by Kontodimas et al. (2004).

<table>
<thead>
<tr>
<th>Model</th>
<th>R^2</th>
<th>RSS (x10⁶)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>0.9965</td>
<td>1.152</td>
</tr>
<tr>
<td>Sharpe</td>
<td>0.9998</td>
<td>0.8661</td>
</tr>
<tr>
<td>Logan</td>
<td>0.9983</td>
<td>0.6503</td>
</tr>
<tr>
<td>Holling</td>
<td>0.9985</td>
<td>5.7955</td>
</tr>
<tr>
<td>Lactin</td>
<td>0.9997</td>
<td>1.0767</td>
</tr>
</tbody>
</table>
Figure A1.1 Representative plots of the linear and several non-linear developmental models, with points indicating empirical developmental data of *N. bisignatus*. All parameter values and data were obtained from Kontodimas et al. (2004). Additionally, Kontodimas et al. (2004) assessed the goodness of fit for these models using two metrics (R^2 and RSS). Their results are shown in Table A1.2.
References

