Details on the valuation functions per module

Supplementary material of the article “Benefits of adapting to sea level rise: the importance of ecosystem services in the French Mediterranean sandy coastline” authored by Cécile Hérivaux (BRGM, Univ Montpellier, c.herivaux@brgm.fr), Hélène Rey-Valette, Bénédicte Rulleau, Anne-Laurence Agenais, Marianne Grisel, Laure Kuhfuss, Laure Maton and Charlotte Vinchon. Regional Environmental Change

Urban (M1)

From Sogreah (2011)

- **Impacts of PF and RF**

 o **Denial**

 \[
 URBAN_{PF+RF} = \sum_{ij} S_i \cdot d_i \cdot \gamma_{ij} \cdot P_{Hj} + \sum_i N_{ij} \cdot P_{Bj}
 \]

 o **Laissez-faire**

 \[
 URBAN_{PF+RF} = \left(1 - \Delta\right) \cdot \sum_{ij} S_i \cdot d_i \cdot \gamma_{ij} \cdot P_{Hj} + \left(1 - \Delta\right) \cdot \sum_i N_{ij} \cdot P_{Bj}
 \]

URBAN$_{PF+RF}$ economic impacts of PF and RF on urban assets (housing and business premises)

- **Impacts of EF**

 \[
 URBAN_{EF} = \sum_{ij} S_i \cdot d_{ij} \cdot \gamma_{ij} \cdot P_{Hj} \cdot \left(\alpha \cdot (H - h_j) + \beta\right) + \sum_{ij} N_{ij} \cdot (d_{Ej} + d_{Sj} + d_{Pj} + OL_j)
 \]

\[
\begin{align*}
 d_{Ej} &= \delta_j \cdot V_{Ej} \\
 d_{Sj} &= \sigma_j \cdot V_{Sj} \\
 OL_j &= \frac{T_j}{12} \cdot \tau \cdot \theta
\end{align*}
\]

URBAN$_{EF}$ economic impacts of EF on urban assets (housing and business premises)

- **S$_i$** EF urban area per type of housing area i (continuous, discontinuous and dispersed) [2006 SIG-LR database; Lecacheux et al. 2010]

- **d_i** property density per type of housing area i (continuous, discontinuous and dispersed) [estimated with INSEE 2008]

- **γ_{ij}** percentage of type of housing j (individual, collective) per type of housing area i (continuous, discontinuous and dispersed) [estimated by the authors]

- **P_{Hj}** mean property value per type of housing (individual, collective) [immobilier.com and terrain-construction.com consulted in March 2011]

- **N_{ij}** number of business premises in (PF+RF) urban areas per type of housing area (continuous, discontinuous, industrial and commercial zones, leisure facilities, mining) and per class of size (< 10 employees and ≥ 10 employees) [estimated with INSEE 2008]

- **P_{Bj}** mean value of business premise per class of size (< 10 employees and ≥ 10 employees) [business premise market survey in 2011]

- **Δ** 10-years accounting depreciation of the capital asset located in a future flooded area [estimated by the authors]
database; Lecacheux et al. 2010]

\[d_i \] density of ground-floor housing per type of housing area \(i \) (continuous, discontinuous and dispersed) [estimated with INSEE 2008]

\[y_{ij} \] percentage of type of ground-floor housing \(j \) (individual, collective) per type of housing area \(i \) (continuous, discontinuous and dispersed) [estimated by the authors]

\(H \) water level during EF [Lecacheux et al. 2010]

\(h_j \) ground-floor level per type of housing \(j \) (individual, collective) [estimated by the authors]

\(\alpha \) damage coefficient [estimated with Torterotot (1993) damage function]

\(\beta \) damage coefficient [estimated with Torterotot (1993) damage function]

\(N_{ij} \) number of business premises in EF urban areas per type of housing area \(i \) (continuous, discontinuous, industrial and commercial zones, leisure facilities, mining) and per type of activity \(j \) (16 types of the NA17 classification INSEE Alisse database) [estimated with INSEE 2008]

\(d_{Ej} \) damage to equipment per type of activity \(j \) (16 types of the NA17 classification INSEE Alisse database)

\(d_{Sj} \) damage to stocks per type of activity \(j \) (16 types of the NA17 classification INSEE Alisse database)

\(d_{Pj} \) damage to premises per type of activity \(j \) (16 types of the NA17 classification INSEE Alisse database)

\(OL_{ij} \) operating loss per type of activity \(j \) (16 types of the NA17 classification INSEE Alisse database)

\(\delta_j \) damage coefficient for equipment per type of activity \(j \) [estimated with IIBRBS (1998)]

\(V_{Ej} \) mean value of equipment per type of activity \(j \) [INSEE Alisse database 2008]

\(\sigma_j \) damage coefficient for stocks per type of activity \(j \) [estimated with IIBRBS (1998)]

\(V_{Sj} \) mean value of stocks per type of activity \(j \) [INSEE Alisse database 2008]

\(\epsilon_j \) damage coefficient for construction per type of activity \(j \) [estimated with IIBRBS (1998)]

\(T_j \) turnover per type of activity \(j \) [INSEE Alisse database 2008]

\(\tau \) time required to restart the activity in months per type of activity \(j \) [estimated with IIBRBS (1998)]

\(\theta \) gross margin rate per type of activity \(j \) [estimated with IIBRBS (1998)]

Agriculture (M2)

From Agenais (2010)

- **PF and RF**

Denial, “Laissez-faire” and Retreat

\[
AGRI_{PF+RF} = \sum_{it} S_{it} \cdot V_i \cdot \pi
\]

\(AGRI_{PF+RF} \) economic impacts of PF and RF on agricultural land

\(S_{it} \) total area of agricultural land loss per municipality \(i \) year \(t \) [2006 SIG-LR database; Lecacheux et al. 2010]

\(V_i \) mean agricultural land values per municipality [2010 AGRESTE and SAFER databases]

\(\pi \) investment return rate (10%)
\(AGRI_{EF} = \sum_{i} S_i \cdot (d_{Yi} + d_{Ri} + d_{Ei}) \)

AGRI\(_{EF}\) economic impacts of EF on crops

- **\(S_i \)** EF agricultural areas over time per crop type \(i \) (34 types of crops considered) [2006 SIG-LR database, SAA Agreste 2008, Lecacheux et al. 2010]
- **\(d_{Yi} \)** yield losses per crop type \(i \) (34 types of crops considered)
- **\(d_{Ri} \)** costs of rehabilitation tasks per crop type \(i \) (34 types of crops considered)
- **\(d_{Ei} \)** damage to equipment per crop type \(i \) (34 types of crops considered)

- For annual crop:
 \[
 d_{Yi} = \sum_{t=N}^{N+2} (\alpha_{it} \cdot y_i \cdot p_i) - \alpha_{IN} \cdot c_{pi} + l_w \cdot (1 - \alpha_{IN}) \cdot (y_i p_i - c_{pi}) - l_R \cdot (\alpha_{RN} \cdot y_R \cdot p_R - c_R)
 \]

- For perennial crop
 \[
 d_{Yi} = \sum_{t=N}^{N+T_{prod}} (\alpha_{it} \cdot y_i \cdot p_i) - \alpha_{IN} \cdot c_{pi} - \sum_{t=N+1}^{T_{prod}} (\delta_t \cdot c_t) + (c_{inv} + c_m \cdot T_{prod})
 \]
 with \(\alpha_{it} = \alpha_{it} (1 - \delta_t) + \delta_t \)

- For pastures
 \[
 d_{Y} = \sum_{t=N}^{N+2} (\alpha_{t} \cdot y \cdot p) - \alpha_{N} \cdot c_p
 \]

- **\(y \)** yield per crop type \(i \) [2008 AGRESTE database]
- **\(p \)** market price (2010 agricultural compensation grid in the case of the natural disasters dataset, CER France 2009)
- **\(N \)** the year of the EF event
- **\(c_i \)** operating costs per crop type \(i \) [Chamber of Agriculture database, CER France 2009, interviews with local agricultural experts]
- **\(c_{pi} \)** operating costs after the flood event per crop type [Chamber of Agriculture database, CER France 2009, interviews with local agricultural experts]
- **\(y_R \)** yield of the resowed crop [2008 AGRESTE database]
- **\(p_R \)** market price of the resowed crop [2010 agricultural compensation grid, in the case of the natural disasters dataset and CER France, 2009]
- **\(c_R \)** operating costs of the replanted crop [Chamber of Agriculture database, CER France 2009, interviews with local agricultural experts]
- **\(T_{prod} \)** time period before the first year of production
- **\(c_{inv} \)** investment costs for replanting [Chamber of Agriculture database, CER France 2009, interviews with local agricultural experts]
- **\(c_m \)** maintenance costs before the first year of production [Chamber of Agriculture database, CER France 2009, interviews with local agricultural experts]
\(\alpha_{it} \) damage coefficient for the year \(t \) per crop type \(i \), function of soil type and the intensity of EF [Devaux-Ros 2000, SYMADREM 2010, Deleuze et al. 1991, adapted by Agenais 2010 to integrate the additional impacts of salt on crops and soil]

\(\alpha_{NR} \) damage coefficient for the year \(N \) of the replanted crop [Devaux-Ros 2000, SYMADREM 2010, Deleuze et al. 1991, adapted by Agenais 2010 to integrate the additional impacts of salt on crops and soil]

\(\delta_{def} \) destruction coefficient of the perennial crop [Devaux-Ros 2000, SYMADREM 2010, Deleuze et al. 1991, adapted by Agenais 2010 to integrate the additional impacts of salt on crops and soil]

\(I_w \) weeding index \((I_w = 0 \text{ if } \alpha_{IN} < 0.6 \text{ and } I_w = 1 \text{ if } \alpha_{IN} \geq 0.6) \) [estimated by the authors according to Deleuze, 1991]

\(I_R \) resowing index \((I_R = 1 \text{ if clay soils and } \alpha_{IN} \geq 0.6, I_R = 0 \text{ otherwise}) \) [estimated by the authors according to Deleuze, 1991]

\[
 d_{E_i} = q_{wi} \cdot c_w + q_{Ai} \cdot c_A + I_G \cdot c_G
\]

\(c_w \) hourly cost of labour [interviews with agricultural experts post Xynthia storm]

\(c_A \) cost of amendment (gypsum, organic matter) [interviews with agricultural experts post Xynthia storm]

\(c_G \) cost for green manure sowing [interviews with agricultural experts post Xynthia storm]

\(q_{wi} \) number of working hours for rehabilitation function of crops (annual, perennial or pastures) [interviews with agricultural experts post Xynthia storm]

\(q_{Ai} \) quantity of amendment (gypsum, organic matter) necessary to rehabilitate the agricultural land, function of crops (annual, perennial or pastures) and soil types (clay, sand) [interviews with agricultural experts post Xynthia storm]

\(I_G \) index indicating green manure sowing \((I_G = 1 \text{ if sandy soils and } \alpha_{IN} \geq 0.6, I_G = 0 \text{ otherwise}) \) [estimated by the authors according to Deleuze, 1991]

\[
 d_{E_i} = \beta \cdot E_i
\]

\(E_i \) equipment values per type of crop \(i \) [Chamber of Agriculture database, CER France 2009], interviews with local agricultural experts post Xynthia storm

\(\beta \) damage coefficient, function of the intensity of EF [Devaux-Ros 2000, SYMADREM 2010, Deleuze et al. 1991, adapted by Agenais 2010 to integrate the additional impacts of salt on crops and soil]

Beaches and dunes (M3)

For the assessment of the storm protection service, see Rulleau et al. (2015)

For the assessment of the recreation service, see Rulleau and Rey-Valette (2013)

Lagoons (M4)

- **PF and RF**
 Denial, “Laissez-faire” and Retreat

\[
 LAGOON_{PF+RF} = \sum_{i} C_N Q_{N,i} + C_P Q_{P,i}
\]

\(LAGOON_{PF+RF} \): Economic impacts of sea level rise on lagoons water purification service due to PF and RF

\(C_N \): Cost (euros / population equivalent (p.e.) of N) for nitrates purification service replacement with a treatment station

\(C_P \): Cost (euros / p.e. of P) for phosphates purification service replacement with a treatment station
\[Q_{N,l} = \begin{cases} 0 & \text{if } N_{l,2010} < \bar{N} \\ \frac{\bar{N}}{V_{l,2100} - V_{l,2010}} & \end{cases} \]

- \(N_{l,2010} \): Lagoon \(l \) initial concentration in nitrogen (in 2010) (expressed in p.e. of N / litre)
- \(\bar{N} \): Threshold concentration in N for eutrophication (expressed in p.e. of N / litre)
- \(V_{l,2100} \): Estimated water volume of lagoon \(l \) in 2100 after sea level rise
- \(V_{l,2010} \): Initial water volume of lagoon \(l \) in 2010

\[Q_{P,l} = \begin{cases} 0 & \text{if } P_{l,2010} < \bar{P} \\ \frac{\bar{P}}{P_{l,2100} - P_{l,2010}} & \end{cases} \]

- \(P_{l,2010} \): Lagoon \(l \) initial concentration in phosphorus (in 2010) (expressed in p.e. of P / litre)
- \(\bar{P} \): Threshold concentration in P for eutrophication (expressed in p.e. of P / litre)

\[\text{EF} \]

No impact.

Wetlands (M5)

For the assessment of the two provisioning services (grazing and materials), and the two regulating services (flood protection and water purification), see Kuhfuss et al. (2016)

Coastal aquifers (M6)

- PF and RF

\[AQUI_{PF+RF} = \sum_{i,t} V_{PF+RF,i,t} \cdot C_i \]

- \(AQUI_{PF+RF} \): economic impacts of saltwater intrusion in coastal aquifers sur to PF and RF
- \(V_{it} \): annual volume abstracted for drinking water supply in the coastal aquifer \(i \) affected by saltwater intrusion over time \(t \)
- \(C_i \): mean annual costs for the installation of a small desalination plant to offset the decrease in fresh groundwater availability in the coastal aquifer \(i \) including investment, operating costs and environmental cost of CO2 emissions [estimated as a function of the required capacity and based on the analysis of the Worldwide Desalting Plants Inventory database provided by Zhou and Tol (2005)]

Denial, “Laissez-faire”

- For five coastal unconfined aquifers:
 \[V_{PF+RF,i,t} = (v_{1it} + v_{2it}) \]
- For two other coastal aquifers:
 \[V_{PF+RF,i,t} = v_{2it} \]
Retreat, Protection

- For five coastal unconfined aquifers:
 \[V_{PF+RF_{it}} = V_{1it} \]

- For two other coastal aquifers:
 \[V_{PF+RF_{it}} = 0 \]

\(v_{1it} \) Sum of the annual water volume abstracted for drinking water supply in the coastal aquifer \(i \) in wells potentially affected by a shift in the saltwater wedge (wells with a depth close to the saltwater wedge and located in one of the five unconfined aquifers) due to PF and RF over time \(t \) [estimated with Ghyben and Drabbe (1889) and Herzberg (1901), Lecacheux (2010), ADES, BRGM and AERMC databases]

\(v_{2it} \) Sum of the annual water volume abstracted for drinking water supply in the coastal aquifer \(i \) in wells potentially flooded by PF and RF over time \(t \) [estimated with Lecacheux (2010), ADES, BRGM and AERMC databases]

- EF

 \[AQUI_{EF} = \sum_i v_{3i} \cdot C_i \]

\(v_{3i} \) Sum of the annual water volume abstracted for drinking water supply in the coastal aquifer \(i \) in wells potentially flooded by EF [estimated with Lecacheux (2010), ADES, BRGM and AERMC databases]