Supporting Information for

Synthesis and cation binding of acridono-18-crown-6 ether type ligands

Tamás Németh ● Attila Kormos ● Tünde Tóth ● György T. Balogh ● Péter Huszthy

Tamás Németh ● Attila Kormos ● Tünde Tóth ● Péter Huszthy

Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, PO Box 91, Hungary
Tel.: +36-1-463-1071; fax: + 36-1-463-3297;
e-mail:huszthy@mail.bme.hu

György T. Balogh
Compound Profiling Laboratory, Chemical Works of Gedeon Richter Plc.
H-1475 Budapest, PO Box 27, Hungary

Content:

The use of the Benesi-Hildebrand method
The use of the Benesi-Hildebrand method

From the UV/Vis titration the stoichiometry and stability constant (K_s) of the metal ion–ligand complexation can be determined. According to our measurements the K_s values ranged between 10^1 and 10^4 M$^{-1}$. This led us to the adoption of the Benesi-Hildebrand method applicable for the determination of association constants of complexes with 1:1 stoichiometry. For the Benesi-Hildebrand evaluation, first the absorbance spectrum (A_0) of the solution containing only ligand 6, and then the spectrum series (A) recorded in the present of a considerable excess of Pb$^{2+}$ ions were taken. The absorbance signals corresponding to a given wavelength (315 nm) were transformed into $A_0/(A_0 - A)$ values. The $A_0/(A_0 - A)$ values were plotted against the reciprocal of Pb$^{2+}$ ion concentration followed by a linear regression analysis. If the intercept of the straight line is divided by the slope, the stability constant can be obtained (Fig 5).

![Benesi-Hildebrand plot](image)

Fig. 5 Benesi-Hildebrand plot for the determination of K_s. Data were taken at 315 nm. Equation obtained with linear regression analysis is $Y = 2.10315 \times 10^{-4}X + 0.92397$ (correlation coefficient: $R^2 = 0.9914$).