On observed aridity changes over the semi-arid regions of India in a warming climate

Ramarao M.V.S.1*, Sanjay J.1, Krishnan R.1, Mujumdar M.1, Amir Bazaz2 & Aromar Revi2

1Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India

2Indian Institute for Human Settlements, Bangalore, India

*Corresponding Author Address

Dr. M. V. S. Ramarao
Centre for Climate Change Research,
Indian Institute of Tropical Meteorology,
Pune 411008, India.

Email: ramarao@tropmet.res.in
Fig. S1 Spatial distributions of mean bias in climatological annual mean precipitation for (a) APHRODITE, (b) GPCC, (c) IMD, (d) CRU and (e) UDEL with respect to (f) ensemble mean (ENS) averaged during the period 1951–2005. Units of precipitation are mm d$^{-1}$
Fig. S2 Spatial distribution of climatological (1951-2005) annual mean aridity index (AI) estimated using PET based on CRU and the gridded precipitation from the individual datasets: (a) APHRODITE, (b) GPCC, (c) IMD, (d) CRU and (e) UDEL
Fig. S3 The spatial pattern of long-term trends in annual mean rainfall from ENS of the multiple precipitation datasets shown in Table 1 during 1951-2005. Striping indicates that at least four out of five precipitation datasets concur on an increase (vertical) or decrease (horizontal) in linear trend.
Fig. S4 Spatial distributions of linear trend in annual mean aridity index (AI) estimated using PET based on CRU and the individual gridded precipitation datasets: (a) APHRODITE, (b) GPCC, (c) IMD, (d) CRU and (e) UDEL during 1951–2005. The trends are expressed as the change over a decade.