Supplementary Material:

Analyzing Several Chelating Agents and Their Effect on Elemental Composition of *Lolium Perenne* and Two Growth Media by Capillary Zone Electrophoresis and Inductively Coupled Plasma Optical Emission Spectrometry

PIRKKO-LEENA HAKKARAINEN* AND ROSE MATILAINEN

University of Jyväskylä, Department of Chemistry, PO Box 35,
FI-40014 University of Jyväskylä, Finland.
e-mail: pirkko-leena.hakkarainen@jyu.fi

Table S1. Response factors determined by HEDTA for DTPA, EDTA, IDA, NTA, PDTA and TTHA.

<table>
<thead>
<tr>
<th>Chelating agent</th>
<th>Response factor</th>
<th>LOD (μmol L⁻¹)</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDTA</td>
<td>0.73</td>
<td>27</td>
<td>0.998</td>
</tr>
<tr>
<td>DTPA</td>
<td>0.51</td>
<td>38</td>
<td>0.998</td>
</tr>
<tr>
<td>IDA</td>
<td>0.74</td>
<td>30</td>
<td>0.997</td>
</tr>
<tr>
<td>NTA</td>
<td>0.45</td>
<td>50</td>
<td>0.997</td>
</tr>
<tr>
<td>PDTA</td>
<td>1.05</td>
<td>20</td>
<td>0.997</td>
</tr>
<tr>
<td>TTHA</td>
<td>1.66</td>
<td>12</td>
<td>0.998</td>
</tr>
</tbody>
</table>

The response factor was calculated by using equation $A_X/[X]=F(A_S/[S])$, where A_X is the area of analyte signal, A_S the area of standard signal, $[X]$ the concentration of analyte, $[S]$ the concentration of standard and F the response factor.

LOD= 3*noise *(c/h), where c is concentration and h is peak height.
Table S2. The calibration parameters in the ICP-OES measurements for each element analyzed.

<table>
<thead>
<tr>
<th>Element</th>
<th>Wavelength (nm)</th>
<th>R²</th>
<th>LOD (mg L⁻¹)ᵃ</th>
<th>LOQ (mg L⁻¹)ᵇ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>396.153</td>
<td>0.9999</td>
<td>0.57</td>
<td>1.9</td>
</tr>
<tr>
<td>As</td>
<td>188.979</td>
<td>0.9996</td>
<td>0.80</td>
<td>2.2</td>
</tr>
<tr>
<td>Ca</td>
<td>317.933</td>
<td>0.9999</td>
<td>0.66</td>
<td>2.2</td>
</tr>
<tr>
<td>Cd</td>
<td>228.802</td>
<td>0.9998</td>
<td>0.70</td>
<td>2.4</td>
</tr>
<tr>
<td>Cu</td>
<td>327.393</td>
<td>0.9999</td>
<td>0.70</td>
<td>2.2</td>
</tr>
<tr>
<td>Fe</td>
<td>238.204</td>
<td>0.9999</td>
<td>0.60</td>
<td>2.1</td>
</tr>
<tr>
<td>K</td>
<td>766.490</td>
<td>0.9999</td>
<td>0.65</td>
<td>2.2</td>
</tr>
<tr>
<td>Mg</td>
<td>285.213</td>
<td>0.9999</td>
<td>0.67</td>
<td>2.2</td>
</tr>
<tr>
<td>Mn</td>
<td>257.610</td>
<td>0.9998</td>
<td>0.74</td>
<td>2.5</td>
</tr>
<tr>
<td>Pb</td>
<td>220.353</td>
<td>0.9997</td>
<td>0.80</td>
<td>2.7</td>
</tr>
<tr>
<td>S</td>
<td>181.975</td>
<td>0.9995</td>
<td>0.90</td>
<td>3.0</td>
</tr>
<tr>
<td>Zn</td>
<td>206.200</td>
<td>0.9999</td>
<td>0.70</td>
<td>2.2</td>
</tr>
</tbody>
</table>

ᵃ limit of detection (LOD) was calculated by substituting the intercept and its standard deviation multiplier (a + 3 sₐ) in the calibration line y = bx + a.
ᵇ limit of quantification (LOQ) was calculated by substituting the intercept and its standard deviation multiplier (a + 10 sₐ) in the calibration line y = bx + a.

Table S3. Element concentrations (mg/g) in black soil (before and after cultivation) and in ryegrass. Ultra pure water, phosphate and aqua regia extractions.

<table>
<thead>
<tr>
<th></th>
<th>water</th>
<th>phosphate</th>
<th>aqua regia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>before</td>
<td>after</td>
<td>grass</td>
</tr>
<tr>
<td>Al</td>
<td>0.72±0.04</td>
<td>0.020±0.002</td>
<td>0.017±0.008</td>
</tr>
<tr>
<td>EDTA</td>
<td>0.44±0.04</td>
<td>0.016±0.008</td>
<td>0.017±0.005</td>
</tr>
<tr>
<td>DTPA</td>
<td>0.211±0.010</td>
<td>0.023±0.003</td>
<td>0.021±0.008</td>
</tr>
<tr>
<td>NTA</td>
<td>0.40±0.03</td>
<td>0.036±0.013</td>
<td>0.010±0.009</td>
</tr>
<tr>
<td>IDA</td>
<td>0.043±0.003</td>
<td>0.010±0.006</td>
<td>0.0317±0.0015</td>
</tr>
<tr>
<td>PDTA</td>
<td>0.16±0.04</td>
<td>0.021±0.002</td>
<td>0.167±0.010</td>
</tr>
<tr>
<td>mix1</td>
<td>0.65±0.02</td>
<td>0.04±0.02</td>
<td>1.08±0.07</td>
</tr>
<tr>
<td>mix2</td>
<td>0.57±0.04</td>
<td>0.062±0.006</td>
<td>0.41±0.03</td>
</tr>
<tr>
<td>clean</td>
<td>0.006±0.002</td>
<td>0.0073±0.0012</td>
<td>0.060±0.011</td>
</tr>
<tr>
<td>Element</td>
<td>Compound</td>
<td>Sample</td>
<td>As (μg/g)</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>TTHA</td>
<td></td>
<td>0.013±0.002</td>
</tr>
<tr>
<td></td>
<td>EDTA</td>
<td></td>
<td>0.019±0.014</td>
</tr>
<tr>
<td></td>
<td>DTPA</td>
<td></td>
<td>0.026±0.04</td>
</tr>
<tr>
<td></td>
<td>NTA</td>
<td></td>
<td>0.13±0.04</td>
</tr>
<tr>
<td></td>
<td>IDA</td>
<td></td>
<td>0.08±0.02</td>
</tr>
<tr>
<td></td>
<td>PDTA</td>
<td></td>
<td>0.0077±0.0015</td>
</tr>
<tr>
<td></td>
<td>mix1</td>
<td></td>
<td>0.029±0.005</td>
</tr>
<tr>
<td></td>
<td>mix2</td>
<td></td>
<td>0.027±0.002</td>
</tr>
<tr>
<td></td>
<td>clean</td>
<td></td>
<td>0.008±0.003</td>
</tr>
</tbody>
</table>

Notes:
- All values are in μg/g.
- Standard deviations are listed with each measurement.
<table>
<thead>
<tr>
<th></th>
<th>mix1</th>
<th>mix2</th>
<th>clean</th>
<th>mix1</th>
<th>mix2</th>
<th>clean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td>1.63±0.04</td>
<td>1.63±0.08</td>
<td>0.29±0.004</td>
<td>1.45±0.05</td>
<td>1.39±0.06</td>
<td>1.26±0.06</td>
</tr>
<tr>
<td></td>
<td>0.37±0.05</td>
<td>0.17±0.03</td>
<td>0.12±0.02</td>
<td>0.47±0.05</td>
<td>0.19±0.04</td>
<td>0.11±0.02</td>
</tr>
<tr>
<td></td>
<td>28.55</td>
<td>24±3</td>
<td>9±3</td>
<td>28±4</td>
<td>28±4</td>
<td>9±4</td>
</tr>
<tr>
<td></td>
<td>1.45±0.05</td>
<td>1.39±0.06</td>
<td>1.26±0.06</td>
<td>27.0</td>
<td>28±4</td>
<td>9±4</td>
</tr>
<tr>
<td></td>
<td>1.45±0.05</td>
<td>1.39±0.06</td>
<td>1.26±0.06</td>
<td>1.85±0.06</td>
<td>1.92±0.06</td>
<td>0.56±0.011</td>
</tr>
<tr>
<td></td>
<td>0.37±0.05</td>
<td>0.17±0.03</td>
<td>0.12±0.02</td>
<td>0.47±0.05</td>
<td>0.19±0.04</td>
<td>0.11±0.02</td>
</tr>
<tr>
<td></td>
<td>28.55</td>
<td>24±3</td>
<td>9±3</td>
<td>28±4</td>
<td>28±4</td>
<td>9±4</td>
</tr>
<tr>
<td></td>
<td>1.45±0.05</td>
<td>1.39±0.06</td>
<td>1.26±0.06</td>
<td>1.85±0.06</td>
<td>1.92±0.06</td>
<td>0.56±0.011</td>
</tr>
<tr>
<td>TTHA</td>
<td>0.97±0.03</td>
<td>0.103±0.006</td>
<td>0.56±0.06</td>
<td>0.176±0.014</td>
<td>0.028±0.002</td>
<td>0.71±0.07</td>
</tr>
<tr>
<td>EDTA</td>
<td>0.238±0.008</td>
<td>0.016±0.008</td>
<td>0.79±0.04</td>
<td>0.22±0.02</td>
<td>0.037±0.005</td>
<td>0.96±0.04</td>
</tr>
<tr>
<td>DTPA</td>
<td>0.212±0.007</td>
<td>0.011±0.007</td>
<td>0.73±0.05</td>
<td>0.195±0.002</td>
<td>0.035±0.013</td>
<td>0.85±0.09</td>
</tr>
<tr>
<td>NTA</td>
<td>0.160±0.008</td>
<td>0.026±0.006</td>
<td>0.45±0.07</td>
<td>0.139±0.004</td>
<td>0.052±0.009</td>
<td>0.66±0.05</td>
</tr>
<tr>
<td>IDA</td>
<td>0.33±0.03</td>
<td>0.042±0.006</td>
<td>0.51±0.04</td>
<td>0.26±0.02</td>
<td>0.058±0.008</td>
<td>0.762±0.015</td>
</tr>
<tr>
<td>PDTA</td>
<td>0.25±0.05</td>
<td>0.018±0.007</td>
<td>0.58±0.08</td>
<td>0.299±0.006</td>
<td>0.045±0.003</td>
<td>0.83±0.12</td>
</tr>
<tr>
<td>mix1</td>
<td>0.79±0.04</td>
<td>0.549</td>
<td>0.599±0.015</td>
<td>0.027±0.012</td>
<td>0.817</td>
<td>2.1±0.2</td>
</tr>
<tr>
<td>mix2</td>
<td>1.07±0.06</td>
<td>0.025±0.005</td>
<td>0.8±0.2</td>
<td>0.94±0.04</td>
<td>0.048±0.004</td>
<td>0.9±0.2</td>
</tr>
<tr>
<td>clean</td>
<td>0.0178±0.0008</td>
<td>0.069±0.003</td>
<td>0.43±0.02</td>
<td>0.055±0.001</td>
<td>0.082±0.008</td>
<td>0.61±0.03</td>
</tr>
<tr>
<td>Mn</td>
<td>0.237±0.010</td>
<td>0.238±0.008</td>
<td>0.243±0.007</td>
<td>0.200±0.008</td>
<td>0.21±0.03</td>
<td>0.206±0.12</td>
</tr>
<tr>
<td></td>
<td>0.017±009</td>
<td>0.026±0.006</td>
<td>0.042±0.006</td>
<td>0.206±0.11</td>
<td>0.012±0.009</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>0.43±0.02</td>
<td>0.038</td>
<td>0.004±0.001</td>
<td>0.007±0.007</td>
<td>0.0007±0.0006</td>
<td>0.06±0.02</td>
</tr>
<tr>
<td></td>
<td>0.206±0.011</td>
<td>0.012±0.009</td>
<td>0.007±0.007</td>
<td>0.017±0.012</td>
<td>0.13±0.02</td>
<td>0.205±0.012</td>
</tr>
<tr>
<td></td>
<td>0.21±0.03</td>
<td>0.042±0.006</td>
<td>0.004±0.001</td>
<td>0.007±0.007</td>
<td>0.0007±0.0006</td>
<td>0.06±0.02</td>
</tr>
<tr>
<td>Pb</td>
<td>0.11±0.04</td>
<td>0.07±0.003</td>
<td>0.07±0.003</td>
<td>0.12±0.007</td>
<td>0.13±0.005</td>
<td>0.21±0.006</td>
</tr>
<tr>
<td></td>
<td>0.070±0.010</td>
<td>0.10±0.03</td>
<td>0.14±0.03</td>
<td>0.12±0.007</td>
<td>0.13±0.005</td>
<td>0.21±0.006</td>
</tr>
<tr>
<td></td>
<td>0.11±0.04</td>
<td>0.07±0.003</td>
<td>0.07±0.003</td>
<td>0.12±0.007</td>
<td>0.13±0.005</td>
<td>0.21±0.006</td>
</tr>
<tr>
<td></td>
<td>0.12±0.003</td>
<td>0.126±0.006</td>
<td>0.136±0.002</td>
<td>0.12±0.007</td>
<td>0.13±0.005</td>
<td>0.21±0.006</td>
</tr>
<tr>
<td>S</td>
<td>0.631±0.013</td>
<td>0.060±0.015</td>
<td>3.2±0.4</td>
<td>0.68±0.09</td>
<td>0.071±0.012</td>
<td>3.0±0.4</td>
</tr>
<tr>
<td></td>
<td>0.263±0.015</td>
<td>0.0813±0.0015</td>
<td>3.8±0.3</td>
<td>0.062±0.006</td>
<td>3.4±0.3</td>
<td>1.12±0.02</td>
</tr>
<tr>
<td></td>
<td>0.48±0.02</td>
<td>0.072±0.012</td>
<td>3.3±0.3</td>
<td>0.07±0.02</td>
<td>2.95±0.15</td>
<td>1.15±0.06</td>
</tr>
<tr>
<td></td>
<td>0.631±0.013</td>
<td>0.060±0.015</td>
<td>3.2±0.4</td>
<td>0.68±0.09</td>
<td>0.071±0.012</td>
<td>3.0±0.4</td>
</tr>
<tr>
<td></td>
<td>0.263±0.015</td>
<td>0.0813±0.0015</td>
<td>3.8±0.3</td>
<td>0.062±0.006</td>
<td>3.4±0.3</td>
<td>1.12±0.02</td>
</tr>
<tr>
<td></td>
<td>0.48±0.02</td>
<td>0.072±0.012</td>
<td>3.3±0.3</td>
<td>0.07±0.02</td>
<td>2.95±0.15</td>
<td>1.15±0.06</td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>NTA</td>
<td>0.068±0.009</td>
<td>0.020±0.004</td>
<td>0.057±0.008</td>
<td>0.06±0.003</td>
<td>0.018±0.004</td>
<td>0.04±0.003</td>
</tr>
<tr>
<td>IDA</td>
<td>0.044±0.004</td>
<td>0.014±0.004</td>
<td>0.16±0.04</td>
<td>0.052±0.010</td>
<td>0.011±0.002</td>
<td>0.005±0.002</td>
</tr>
<tr>
<td>PDTA</td>
<td>0.045±0.005</td>
<td>0.011±0.003</td>
<td>0.109±0.008</td>
<td>0.057±0.010</td>
<td>0.007±0.006</td>
<td>0.026</td>
</tr>
<tr>
<td>NTA</td>
<td>0.038±0.010</td>
<td>0.0187±0.0015</td>
<td>0.038±0.003</td>
<td>0.0107±0.0006</td>
<td>0.051±0.003</td>
<td>0.037±0.008</td>
</tr>
<tr>
<td>IDA</td>
<td>0.029</td>
<td>0.063</td>
<td>0.04±0.02</td>
<td>0.34±0.11</td>
<td>0.050±0.006</td>
<td>0.073±0.002</td>
</tr>
<tr>
<td>PDTA</td>
<td>0.036±0.011</td>
<td>0.039±0.006</td>
<td>0.05±0.02</td>
<td>0.056±0.011</td>
<td>0.035±0.006</td>
<td>0.006±0.005</td>
</tr>
<tr>
<td>mix1</td>
<td>0.055±0.005</td>
<td>0.021±0.007</td>
<td>0.042</td>
<td>0.047±0.005</td>
<td>0.017±0.005</td>
<td>0.015</td>
</tr>
<tr>
<td>mix2</td>
<td>0.052±0.013</td>
<td>0.044±0.003</td>
<td>0.04±0.03</td>
<td>0.055±0.005</td>
<td>0.035±0.006</td>
<td>0.02±0.02</td>
</tr>
<tr>
<td>clean</td>
<td>0.034±0.004</td>
<td>0.035±0.003</td>
<td>0.059±0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notice! if empty spaces are left, the result obtained is <LOD; if there are no error limits after the result, the result obtained is from only one replicate
Table S4. Element concentrations (mg/g) in clay (before and after cultivation) and in ryegrass. Ultra pure water, phosphate and *aqua regia* extractions.

<table>
<thead>
<tr>
<th></th>
<th>water before</th>
<th>water after</th>
<th>grass</th>
<th>phosphate before</th>
<th>phosphate after</th>
<th>grass</th>
<th>aqua regia before</th>
<th>aqua regia after</th>
<th>grass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>1.3±0.2</td>
<td>0.29±0.10</td>
<td>0.50±0.03</td>
<td>1.44±0.07</td>
<td>0.29±0.04</td>
<td>0.428±0.011</td>
<td>2.6±0.3</td>
<td>2.8±0.13</td>
<td>2.5±0.02</td>
</tr>
<tr>
<td>EDTA</td>
<td>1.71±0.07</td>
<td>0.028±0.005</td>
<td>0.273±0.006</td>
<td>1.28±0.14</td>
<td>0.046±0.003</td>
<td>0.248±0.008</td>
<td>2.34±0.02</td>
<td>3.00±0.04</td>
<td>2.5±0.03</td>
</tr>
<tr>
<td>DTPA</td>
<td>1.28±0.08</td>
<td>0.06±0.03</td>
<td>0.28±0.08</td>
<td>1.29±0.05</td>
<td>0.08±0.04</td>
<td>0.24±0.07</td>
<td>2.50±0.12</td>
<td>3.0±0.3</td>
<td>2.6±0.6</td>
</tr>
<tr>
<td>NTA</td>
<td>1.43±0.07</td>
<td>0.11±0.03</td>
<td>0.5±0.3</td>
<td>1.55±0.08</td>
<td>0.14±0.03</td>
<td>0.6±0.2</td>
<td>2.46±0.04</td>
<td>2.88±0.03</td>
<td>2.2±0.2</td>
</tr>
<tr>
<td>IDA</td>
<td>0.12±0.05</td>
<td></td>
<td></td>
<td>0.07±0.02</td>
<td>0.014±0.0015</td>
<td>0.085±0.009</td>
<td>2.62±0.15</td>
<td>2.8±0.2</td>
<td>2.4±0.5</td>
</tr>
<tr>
<td>EDTA</td>
<td>0.92±0.05</td>
<td>0.11±0.02</td>
<td>0.24±0.06</td>
<td>1.11±0.05</td>
<td>0.13±0.02</td>
<td>0.51±0.09</td>
<td>2.63±0.11</td>
<td>2.7±0.2</td>
<td>2.6±0.5</td>
</tr>
<tr>
<td>mix1</td>
<td>0.63±0.07</td>
<td>0.40±0.06</td>
<td></td>
<td>0.65±0.06</td>
<td>0.6±0.06</td>
<td>0.64±0.02</td>
<td>1.3±0.2</td>
<td>2.9±0.3</td>
<td>2.14±0.005</td>
</tr>
<tr>
<td>mix2</td>
<td>0.50±0.08</td>
<td>1.11±0.05</td>
<td></td>
<td>0.57±0.06</td>
<td>1.08±0.07</td>
<td></td>
<td>1.0±0.3</td>
<td>2.7±0.4</td>
<td>2.95±0.008</td>
</tr>
<tr>
<td>clean</td>
<td>0.004±0.003</td>
<td></td>
<td></td>
<td>0.006±0.002</td>
<td>0.0087±0.0006</td>
<td></td>
<td>3.4±0.2</td>
<td>2.86±0.10</td>
<td>2.5±0.4</td>
</tr>
<tr>
<td>As</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.04±0.003</td>
<td>0.04±0.006</td>
<td>0.006±0.002</td>
<td>0.087±0.0006</td>
<td>0.84±0.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.34±0.03</td>
<td></td>
<td></td>
<td>0.34±0.03</td>
<td>0.34±0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>1.66±0.12</td>
<td>0.12±0.05</td>
<td>0.34±0.03</td>
<td>1.71±0.14</td>
<td>0.15±0.02</td>
<td>0.397±0.005</td>
<td>1.7±0.2</td>
<td>2.0±0.10</td>
<td>2.97±0.03</td>
</tr>
<tr>
<td>EDTA</td>
<td>0.894±0.007</td>
<td>0.013±0.008</td>
<td>0.419±0.010</td>
<td>0.61±0.07</td>
<td>0.049±0.002</td>
<td>0.45±0.02</td>
<td>1.60±0.15</td>
<td>2.21±0.12</td>
<td>3.71±0.04</td>
</tr>
<tr>
<td>DTPA</td>
<td>1.8±0.3</td>
<td>0.04±0.02</td>
<td>0.43±0.14</td>
<td>1.81±0.09</td>
<td>0.09±0.03</td>
<td>0.45±0.11</td>
<td>1.71±0.06</td>
<td>2.1±0.3</td>
<td>3.39±0.11</td>
</tr>
<tr>
<td>NTA</td>
<td>0.87±0.04</td>
<td>0.04±0.02</td>
<td>0.56±0.12</td>
<td>0.92±0.03</td>
<td>0.08±0.02</td>
<td>0.73±0.14</td>
<td>1.58±0.06</td>
<td>2.08±0.05</td>
<td>3.75±0.13</td>
</tr>
<tr>
<td>IDA</td>
<td>0.58±0.14</td>
<td>0.009±0.0015</td>
<td>0.65±0.09</td>
<td>0.50±0.10</td>
<td>0.048±0.003</td>
<td>1.12±0.10</td>
<td>1.4±0.2</td>
<td>1.91±0.14</td>
<td>4.78±0.08</td>
</tr>
<tr>
<td>PDTA</td>
<td>1.38±0.07</td>
<td>0.052±0.012</td>
<td>0.31±0.09</td>
<td>1.89±0.02</td>
<td>0.088±0.008</td>
<td>0.68±0.14</td>
<td>1.74±0.06</td>
<td>2.0±0.2</td>
<td>3.8±0.5</td>
</tr>
<tr>
<td>mix1</td>
<td>0.25±0.03</td>
<td>0.33±0.10</td>
<td></td>
<td>0.28±0.03</td>
<td>0.62±0.03</td>
<td></td>
<td>0.9±0.3</td>
<td>2.0±0.2</td>
<td>3.10±0.008</td>
</tr>
<tr>
<td>mix2</td>
<td>0.15±0.03</td>
<td>0.53±0.08</td>
<td></td>
<td>0.20±0.02</td>
<td>0.71±0.13</td>
<td></td>
<td>0.6±0.2</td>
<td>2.0±0.3</td>
<td>3.767±0.007</td>
</tr>
<tr>
<td>clean</td>
<td>0.219±0.013</td>
<td>0.018±0.002</td>
<td>1.00±0.012</td>
<td>0.111±0.003</td>
<td>0.047±0.003</td>
<td>0.99±0.06</td>
<td>9.2±1.2</td>
<td>1.9±0.2</td>
<td>4.9±0.2</td>
</tr>
<tr>
<td>Fe</td>
<td>EDTA</td>
<td>DTPA</td>
<td>NTA</td>
<td>IDA</td>
<td>PDTA</td>
<td>mix1</td>
<td>mix2</td>
<td>clean</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>1.10±0.12</td>
<td>0.53±0.13</td>
<td>1.98±0.06</td>
<td>1.07±0.06</td>
<td>0.53±0.04</td>
<td>1.83±0.02</td>
<td>2.5±0.4</td>
<td>2.7±0.2</td>
<td>3.5±0.03</td>
<td></td>
</tr>
<tr>
<td>1.41±0.06</td>
<td>0.28±0.03</td>
<td>2.75±0.05</td>
<td>0.93±0.10</td>
<td>0.31±0.02</td>
<td>2.55±0.02</td>
<td>2.23±0.06</td>
<td>2.68±0.13</td>
<td>4.76±0.12</td>
<td></td>
</tr>
<tr>
<td>1.11±0.11</td>
<td>0.33±0.03</td>
<td>2.1±0.5</td>
<td>1.05±0.04</td>
<td>0.39±0.10</td>
<td>2.0±0.5</td>
<td>2.43±0.06</td>
<td>2.7±0.4</td>
<td>3.8±0.4</td>
<td></td>
</tr>
<tr>
<td>0.81±0.03</td>
<td>0.089±0.012</td>
<td>0.5±0.2</td>
<td>0.86±0.05</td>
<td>0.108±0.013</td>
<td>0.63±0.15</td>
<td>2.36±0.04</td>
<td>2.73±0.06</td>
<td>2.3±0.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K</th>
<th>EDTA</th>
<th>DTPA</th>
<th>NTA</th>
<th>IDA</th>
<th>PDTA</th>
<th>mix1</th>
<th>mix2</th>
<th>clean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.014±0.002</td>
<td>5.1±0.3</td>
<td>0.037±0.005</td>
<td>4.97±0.06</td>
<td>0.25±0.05</td>
<td>0.37±0.03</td>
<td>6±0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.019±0.014</td>
<td>4.8±0.06</td>
<td>0.055±0.007</td>
<td>4.55±0.05</td>
<td>0.219±0.004</td>
<td>0.45±0.05</td>
<td>5.67±0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.016±0.005</td>
<td>5.0±0.8</td>
<td>0.220±0.012</td>
<td>0.34±0.07</td>
<td>6.0±0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0±0.9</td>
<td>0.024±0.007</td>
<td>6.22±0.13</td>
<td>0.228±0.007</td>
<td>0.32±0.02</td>
<td>6.9±0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.9±0.6</td>
<td>0.04±0.02</td>
<td>5.0±0.6</td>
<td>0.23±0.02</td>
<td>0.28±0.02</td>
<td>5.6±0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.016±0.005</td>
<td>5.0±0.8</td>
<td>0.220±0.012</td>
<td>0.34±0.07</td>
<td>6.0±0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0±0.9</td>
<td>0.024±0.007</td>
<td>6.22±0.13</td>
<td>0.228±0.007</td>
<td>0.32±0.02</td>
<td>6.9±0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.9±0.6</td>
<td>0.04±0.02</td>
<td>5.0±0.6</td>
<td>0.23±0.02</td>
<td>0.28±0.02</td>
<td>5.6±0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.016±0.005</td>
<td>5.0±0.8</td>
<td>0.220±0.012</td>
<td>0.34±0.07</td>
<td>6.0±0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0±0.9</td>
<td>0.024±0.007</td>
<td>6.22±0.13</td>
<td>0.228±0.007</td>
<td>0.32±0.02</td>
<td>6.9±0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.9±0.6</td>
<td>0.04±0.02</td>
<td>5.0±0.6</td>
<td>0.23±0.02</td>
<td>0.28±0.02</td>
<td>5.6±0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mg</th>
<th>EDTA</th>
<th>DTPA</th>
<th>NTA</th>
<th>IDA</th>
<th>PDTA</th>
<th>mix1</th>
<th>mix2</th>
<th>clean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.127±0.012</td>
<td>0.009±0.008</td>
<td>0.21±0.04</td>
<td>0.143±0.012</td>
<td>0.024±0.003</td>
<td>0.32±0.02</td>
<td>0.60±0.13</td>
<td>0.72±0.03</td>
<td>1.36±0.02</td>
</tr>
<tr>
<td>0.042±0.0012</td>
<td>0.242±0.0007</td>
<td>0.036±0.006</td>
<td>0.0117±0.0012</td>
<td>0.328±0.006</td>
<td>0.577±0.002</td>
<td>0.744±0.006</td>
<td>1.51±0.02</td>
<td></td>
</tr>
<tr>
<td>0.014±0.02</td>
<td>0.25±0.11</td>
<td>0.148±0.005</td>
<td>0.016±0.005</td>
<td>0.35±0.11</td>
<td>0.56±0.03</td>
<td>0.73±0.07</td>
<td>1.6±0.2</td>
<td></td>
</tr>
<tr>
<td>0.05±0.003</td>
<td>0.32±0.04</td>
<td>0.062±0.004</td>
<td>0.018±0.003</td>
<td>0.51±0.08</td>
<td>0.56±0.006</td>
<td>0.74±0.03</td>
<td>1.53±0.05</td>
<td></td>
</tr>
<tr>
<td>0.05±0.02</td>
<td>0.43±0.07</td>
<td>0.05±0.011</td>
<td>0.013±0.0006</td>
<td>0.76±0.06</td>
<td>0.58±0.03</td>
<td>0.67±0.05</td>
<td>2.01±0.09</td>
<td></td>
</tr>
<tr>
<td>0.019±0.004</td>
<td>0.14±0.04</td>
<td>0.024±0.005</td>
<td>0.428±0.011</td>
<td>0.253±0.012</td>
<td>0.71±0.07</td>
<td>1.42±0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.013±0.005</td>
<td>0.23±0.11</td>
<td>0.019±0.005</td>
<td>0.37±0.04</td>
<td>0.12±0.08</td>
<td>0.69±0.06</td>
<td>1.48±0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.055±0.003</td>
<td>0.57±0.10</td>
<td>0.023±0.005</td>
<td>0.011±0.001</td>
<td>0.61±0.07</td>
<td>3.1±0.3</td>
<td>0.66±0.06</td>
<td>1.77±0.10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mn</th>
<th>EDTA</th>
<th>DTPA</th>
<th>NTA</th>
<th>IDA</th>
<th>PDTA</th>
<th>mix1</th>
<th>mix2</th>
<th>clean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.073±0.008</td>
<td>0.010±0.007</td>
<td>0.084±0.007</td>
<td>0.024±0.003</td>
<td>0.6±0.02</td>
<td>0.074±0.006</td>
<td>0.062±0.0015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.077±0.004</td>
<td>0.065±0.008</td>
<td>0.009±0.0006</td>
<td>0.021±0.003</td>
<td>0.05±0.003</td>
<td>0.079±0.0006</td>
<td>0.11±0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.081±0.012</td>
<td>0.085±0.006</td>
<td>0.009±0.002</td>
<td>0.063±0.006</td>
<td>0.08±0.02</td>
<td>0.08±0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.051±0.003</td>
<td>0.062±0.003</td>
<td>0.009±0.001</td>
<td>0.026±0.008</td>
<td>0.056±0.0012</td>
<td>0.076±0.0015</td>
<td>0.088±0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.021±0.010</td>
<td>0.022±0.005</td>
<td>0.006±0</td>
<td>0.023±0.005</td>
<td>0.044±0.006</td>
<td>0.063±0.006</td>
<td>0.204±0.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.061±0.005</td>
<td>0.091±0.0006</td>
<td>0.0085±0.0007</td>
<td>0.06±0.003</td>
<td>0.072±0.009</td>
<td>0.07±0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mix1</td>
<td>mix2</td>
<td>clean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>0.058±0.003</td>
<td>0.021±0.006</td>
<td>0.021±0.006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0557±0.0015</td>
<td>0.0365±0.0007</td>
<td>0.0365±0.0007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.009±0.005</td>
<td>0.010±0.007</td>
<td>0.010±0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTHA</td>
<td>0.09±0.009</td>
<td>0.09±0.004</td>
<td>0.09±0.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDTA</td>
<td>0.074±0.012</td>
<td>0.07±0.02</td>
<td>0.07±0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTPA</td>
<td>0.025±0.002</td>
<td>0.085±0.002</td>
<td>0.085±0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTA</td>
<td>0.012±0.007</td>
<td>0.012±0.007</td>
<td>0.012±0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDA</td>
<td>0.025±0.003</td>
<td>0.025±0.003</td>
<td>0.025±0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDTA</td>
<td>0.032±0.003</td>
<td>0.032±0.003</td>
<td>0.032±0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.070±0.006</td>
<td>0.070±0.006</td>
<td>0.070±0.006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.17±0.02</td>
<td>0.17±0.02</td>
<td>0.17±0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>0.32±0.05</td>
<td>0.06±0.02</td>
<td>1.57±0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.336±0.014</td>
<td>0.009±0.003</td>
<td>0.009±0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.076±0.006</td>
<td>1.28±0.07</td>
<td>1.28±0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.34±0.06</td>
<td>1.12±0.09</td>
<td>1.12±0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.377±0.0</td>
<td>0.15±0.02</td>
<td>0.15±0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.40±0.04</td>
<td>3.12±0.06</td>
<td>3.12±0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.018±0.010</td>
<td>0.009±0.006</td>
<td>0.09±0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.036±0.011</td>
<td>0.038±0.003</td>
<td>0.038±0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.090±0.006</td>
<td>0.090±0.006</td>
<td>0.090±0.006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.021±0.004</td>
<td>0.014±0.005</td>
<td>0.014±0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.041±0.003</td>
<td>0.041±0.003</td>
<td>0.041±0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.040±0.002</td>
<td>0.040±0.002</td>
<td>0.040±0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.040±0.002</td>
<td>0.040±0.002</td>
<td>0.040±0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.04±0.015</td>
<td>3.04±0.015</td>
<td>3.04±0.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notice! if empty spaces are left, the result obtained is <LOD; if there are no error limits after the result, the result obtained is from only one replicate
Figure S1. Trends of chelating agent effect on to the solubility and extractability of Fe in water and phosphate solutions. a) Black soil extracted with ultra pure water, b) Black soil extracted with phosphate solution, c) Clay extracted with ultra pure water, d) Clay extracted with phosphate solution.
Figure S2. The cumulative results of elemental concentrations and chelating agents measured in phosphate solution. a) Black soil before cultivation, b) Black soil after cultivation, c) Ryegrass grown in black soil, d) Clay before cultivation, e) Clay after cultivation, f) Ryegrass grown in clay.