Dissection of the Voltage-Activated Potassium Outward Currents in Adult Mouse Ventricular Myocytes: $I_{to,f}$, $I_{to,s}$, $I_{K,slow1}$, $I_{K,slow2}$, & I_{ss}

Jie Liu1, Kyoung-Han Kim1, Barry London3, Michael J. Morales4, Peter H. Backx1,2

1Departments of Physiology and Medicine, Heart & Stroke / Richard Lewar Centre of Excellence, University of Toronto, and 2Division of Cardiology, University Health Network, Toronto, Ontario, Canada. 3The Cardiovascular Institute, University of Pittsburgh, PA, USA. 4Department of Physiology & Biophysics, University at Buffalo, the State University of New York, Buffalo, NY, USA.

*These authors contributed equally to this work.

Keywords: Electrophysiology, K^+ currents, Adult Mouse Ventricular Myocytes.

Correspondence: Peter H. Backx DVM PhD
Departments of Physiology and Medicine, Heart & Stroke / Richard Lewar Centre of Excellence
Rm. 71, FitzGerald Bldg.
150 College St.
Toronto, Ontario, M5S 3E2, Canada
Tel:+1-416-946-8112
Fax:+1-416-946-8380
E-mail: p.backx@utoronto.ca
Supplement Fig. S1 The effect of 4-AP and HpTx-2 co-treatments on I_{Kv}.

a. Representative I_{Kv} traces before and after both HpTx-2 (5 µM) and 4-AP (250 µM) administrations are displayed. **b.** HpTx-2 and 4-AP sensitive current inactivates very rapidly. **c.** I_{K,slow2} was relatively insensitive to concurrent administrations of 4-AP (250 µM) and HpTx-2 (5 µM) while these drugs selectively reduced I_{Io} and I_{K,slow1}.

Supplement Fig. S2 Pharmacological Inhibitors on I_{Kv} in K_{V1DN} cardiomyocytes.

a & b. In K_{V1DN} cardiomyocytes, I_{Kv} fitted with 2-exponential function virtually lacks 4-AP sensitive current, whereas small 4-AP sensitive current is observed in the 3-exponentially fitted I_{Kv}. **c.** Representative I_{Kv} of K_{V1DN} myocytes in the absence or presence of HpTx-2 (5 µM) is illustrated that it blocked most of the fast component, leaving a very slow component.

Supplement Fig. S3 I_{Kv} in Irx5-deficient cardiomyocytes.

Loss of Irx5 leads to disruption of transmural difference in I_{Io} densities while not affecting I_{K,slow1} and I_{K,slow2}. n = 6 – 8 per group. N = 5. *, P < 0.05 vs. EPI of each genotype. NS, not significant.
Supplemental Fig. S1

a

Current with HpTx-2 & 4-AP

b

I_{to}, I_{K,slow1}, I_{K,slow2}

C

Current with HpTx-2 & 4-AP
Supplementary Fig. S2

a
- Control
- 4-AP (250 µM)

b
- Control
- HpTx-2 (5 µM)

c
- Control
- HpTx-2 (5 µM)

Graphs A and B
- Voltage steps: +60 mV to -80 mV and +60 mV to +60 mV.
- Duration: 20 seconds.
- Current: 7 pA/pF.
- Time scale: 4 sec.

Graph C
- Voltage steps: +30 mV to -80 mV.
- Duration: 20 seconds.
- Current: 7 pA/pF.
- Time scale: 4 sec and 200 ms.
Supplemental Fig. S3

- Current Density (pA/pF) for Irx5 WT and Irx5 KO

- Bars represent the current density with error bars indicating standard deviation.

- **I_{to}**: Statistical significance indicated with asterisks (*).
- **I_{K,slow1}** and **I_{K,slow2}**: Statistical significance indicated with asterisks (*).

- Legend: ENDO (white bars) vs. EPI (black bars)