Proof of Lemma 1

Consider a projection matrix satisfying $H_p X_1 = 0$, $H_p X_2 = X_2$, and $H_p Z_2 = Z_2$ in the balanced design. We first show that all the elements in y_{rr} have the same expectation under null hypothesis. By pre-multiplying Equation 3 by H_p we get

$$y_{rr} = H_p y = X_2 \beta_2 + Z_1 \gamma_1 + Z_2 \gamma_2 + \epsilon_{rr},$$

where $Z_1 \gamma_1 = H_p Z_1$ and $\epsilon_{rr} = H_p \epsilon$. Note that the first property of H_p guarantees that the fixed effects of β_1 is wiped away in this model. Now, the random effects and error terms γ_1, γ_2 and ϵ_{rr} have all a zero expectation. Moreover, under the null hypothesis 2, $\beta_2 = 0$. This implies that the vector y_{rr} has zero expectation under the null hypothesis.

It remains to show that $F_{rr} = F_{ss}$. To this end, we use the fact that $H_p X_2 = X_2$, which implies

$$y_{rr} H_{[X_2]} y_{rr} = (y' H_p)(X_2(X_2'X_2)^{-1}X_2')(H_p y) = y'(H_p X_2)(X_2'X_2)^{-1}(X_2' H_p) y$$

$$= y' X_2(X_2'X_2)^{-1}X_2' y = y' H_{[X_2]} y.$$

Similarly, we have $y_{rr} H_{[Z_2]} y_{rr} = y' H_{[Z_2]} y$. Therefore,

$$F_{rr} = \frac{y_{rr}' H_{[X_2]} y_{rr} / p_2}{y_{rr}' H_{[Z_2]} y_{rr} / q_2} = \frac{y' H_{[X_2]} y / p_2}{y' H_{[Z_2]} y / q_2} = F_{ss}.$$

Proof of Theorem 1

The proof is similar to the Lemma 1, but we should mention that in this case also

$$y_{rr} H_{[X_{2r}]} y_{rr} = y'(I - H_{[X_1]}) H_{[X_{2r}]} (I - H_{[X_1]}) y = y' H_{[X_{2r}]} y.$$

Proof of Theorem 2

Due to lemma 1, and the fact that we introduced modified residuals only for balanced designs, it merely remains to prove that $F_{mr} = F_{rr}$. First note that

$$y_{mr}' X_{mr} = y_{rr} V V' X_2 = \lambda y_{rr}(H_{nd}) X_2 = \lambda y_{rr}' X_2,$$

$$X_{mr}' X_{mr} = X_2' V V' X_2 = \lambda X_2' (H_{nd}) X_2 = \lambda X_2' X_2,$$

and

$$y_{mr} y_{mr} = y_{rr}' V V' y_{rr} = \lambda y_{rr}(H_{nd}) y_{rr} = \lambda y_{rr}' y_{rr}.$$
where we have used that $V^TV' = \lambda H_{nd}$ and based on Theorem 3 and 5, which shows the eigen-values of numerator and denominator are the same, and we have

$$F_{mr} = \frac{y_{mr}'H_{|X_{mr}|}y_{mr}}{y_{mr}'H_{|Z_{mr}|}y_{mr}} = \frac{y_{mr}'(X_{mr}'X_{mr})^{-1}X_{mir}'y_{mr}}{y_{mr}'(Z_{mr}'Z_{mr})^{-1}Z_{mir}'y_{mr}}$$

$$= \frac{\lambda y_{rr}'X_2(\frac{1}{\lambda})(X_2'X_2)^{-1}X_2^2y_{rr}}{\lambda y_{rr}'Z_2(\frac{1}{\lambda})(Z_2'Z_2)^{-1}Z_2^2y_{rr}}$$

$$= \frac{y_{rr}'X_2(X_2'X_2)^{-1}X_2^2y_{rr}}{y_{rr}'Z_2(Z_2'Z_2)^{-1}Z_2^2y_{rr}}$$

$$= \frac{y'_{H_{|X_2|}y}}{y'_{H_{|Z_2|}y}}$$

\[\blacksquare\]

Proof of Theorem 3

The following definitions are required in the proofs of Theorem 3, 4 and 5. As we need Helmert contrasts in order to parametrize the designs matrices, we recall here the construction of the Helmert orthonormal contrasts (see e.g. Sahai and Ageel 2000).

Definition 1 For an integer k and $i = 1, \ldots, k-1$, define q_{ik}^k to be a vector of length k, with

$$q_{ik}^k(j) = \begin{cases} \frac{i}{\sqrt{i(i+1)}} & \text{if } j \leq i \\ \frac{-i}{\sqrt{i(i+1)}} & \text{if } j = i + 1 \\ 0 & \text{otherwise.} \end{cases}$$

Moreover, define Q_k to be a matrix of size $k \times (k-1)$ whose columns are q_{ik}^k’s,

$$Q_k = [q_{1k}^1, q_{2k}^2, \ldots, q_{k-1}^{k-1}] .$$

Lemma 3 The set of vectors $\{q_{1k}^1, q_{2k}^2, \ldots, q_{k-1}^{k-1}\}$ are k orthonormal vectors, i.e.,

$$q_{ik}^k q_{jk}^k = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

Therefore, $Q_k^tQ_k = I_{k-1}$. Moreover, we have $Q_k^tQ_k' = \Delta_k = I_k - I_{k \times k} / k$. Note that the above is true for any set of $k-1$ orthonormal contrasts.

The proof of this lemma is omitted since it straightforward. The central part to prove the Theorem is to show that $\Sigma_{rr} = \lambda H_{nd}$. We first construct the matrix H_{nd}. Based on model (20) and on definition 1, for repeated measures ANOVA with one within-subject factor, we have that

$$X_q = I_{s \times 1} \otimes Q_b \otimes I_{n \times 1}, \quad X_z = Q_s \otimes I_{b \times 1} \otimes I_{n \times 1}.$$ \[26\]
Therefore, we can construct $X_{\eta\pi}$ as

$$X_{\eta\pi} = Q_s \otimes Q_b \otimes I_{n \times 1}.$$

Note that

$$X'_{\eta}X_{\eta} = (I_{1 \times s} \otimes Q'_b \otimes I_{1 \times n}) (I_{s \times 1} \otimes Q_b \otimes I_{n \times 1})$$

$$= (s I_{1 \times 1}) \otimes (Q'_b Q_b) \otimes (n I_{1 \times 1})$$

$$= (s I_{1 \times 1}) \otimes I_{s-1} \otimes (n I_{1 \times 1})$$

$$= snI_{b-1}.$$

Hence, for $H_{[X_{\eta}]} = X_{\eta}(X'_{\eta}X_{\eta})^{-1}X'_{\eta}$, we have

$$H_{[X_{\eta}]} = X_{\eta}(X'_{\eta}X_{\eta})^{-1}X'_{\eta}$$

$$= \frac{1}{sn} X_{\eta}X'_{\eta}$$

$$= \frac{1}{sn} (I_{s \times 1} \otimes Q_b \otimes I_{1 \times n}) (I_{s \times 1} \otimes Q'_b \otimes I_{1 \times n})$$

$$= \frac{1}{sn} (I_{s \times s} \otimes (Q_b Q'_b) \otimes I_{n \times n})$$

$$= \frac{1}{sn} (I_{s \times s} \otimes \Delta_b \otimes I_{n \times n}).$$

Similarly, for $X_{\eta\pi}$, we have $X'_{\eta\pi}X_{\eta\pi} = (Q'_s \otimes Q'_b \otimes I_{1 \times n}) (Q_s \otimes Q_b \otimes I_{n \times 1}) = nI_{(s-1)(b-1)}$ and $H_{[X_{\eta\pi}]} = X_{\eta\pi}(X'_{\eta\pi}X_{\eta\pi})^{-1}X'_{\eta\pi} = \frac{1}{n} (\Delta_s \otimes \Delta_b \otimes I_{n \times n})$. Therefore, we can write

$$H_{nd} = H_{[X_{\eta}]} + H_{[X_{\eta\pi}]}$$

$$= \frac{1}{sn} (I_{s \times s} \otimes \Delta_b \otimes I_{n \times n}) + \frac{1}{n} (\Delta_s \otimes \Delta_b \otimes I_{n \times n})$$

$$= \frac{1}{sn} \left(\frac{1}{s} I_{s \times s} + \Delta_s \right) \otimes \Delta_b \otimes I_{n \times n}$$

$$= \frac{1}{n} I_{s \times s} \otimes \Delta_b \otimes I_{n \times n}.$$

In the following, we derive S_{rr} in a simple way, based on (22):

$$S_{rr} = H_{nd} \left[\sigma^2_{X_{\eta\pi}X_{\eta\pi}} + X'_{\eta\pi} \text{cov}(\eta\pi)X_{\eta\pi} + \sigma^2 I_N \right] H_{nd}$$

$$= \frac{1}{n^2} \left(I_s \otimes \Delta_b \otimes I_{n \times n} \right) \left[\sigma^2_{X_{\eta\pi}} (I_s \otimes \Delta_b \otimes I_{n \times n}) + \sigma^2 (I_s \otimes I_b \otimes I_n) \right] (I_s \otimes \Delta_b \otimes I_{n \times n})$$

$$= \frac{1}{n^2} \left[\sigma^2 (I_s \otimes \Delta_b \otimes I_{n \times n}) + \sigma^2 (I_s \otimes \Delta_b \otimes n I_{n \times n}) \right]$$

$$= \frac{1}{n^2} \left[\sigma^2 (I_s \otimes \Delta_b \otimes n^2 I_{n \times n}) + \sigma^2 (I_s \otimes \Delta_b \otimes n I_{n \times n}) \right]$$

$$= \frac{1}{n} (\sigma^2 + \sigma^2) (I_s \otimes \Delta_b \otimes I_{n \times n})$$

$$= \frac{1}{n} (I_s \otimes \Delta_b \otimes I_{n \times n}),$$
where we used the facts that $H_{nd}X_\eta\eta' = 0$, $\Delta_b\Delta_b = \Delta_b$ and $\mathbb{I}_{n \times n} \mathbb{I}_{n \times n} = n \mathbb{I}_{n \times n}$. According to the definition of H_{nd} and Σ_{rr} we have shown that $\Sigma_{rr} = \lambda H_{nd}$, where, in the repeated measures ANOVA with one within-subject factor, λ is $(n\sigma_\omega^2 + \sigma_\epsilon^2)$, which proves the first assertion.

To show the second assertion of Theorem 3 we use the fact that H_{nd} is an idempotent matrix, i.e. it has only two eigen-values 0 and 1. This last eigen-value has multiplicity equal to the rank of H_{nd} or number of (linearly independent) projection columns, which is equal to the number of columns of X_η and $X_\eta\pi$. So the multiplicity is $(b-1) + (b-1)(s-1)$, i.e. $(b-1)s$. Then the only non-zero eigen-value of Σ_{rr} is $\lambda = (n\sigma_\omega^2 + \sigma_\epsilon^2)$, where $\sigma_\omega^2 = \frac{b}{b-1}\sigma_\eta^2$ with the above multiplicity.

Proof of Lemma 2

From the definition of Σ_{rr}, the covariance matrix of y_{rr}, and the fact that $E(y_{rr}) = 0$, we have

$$E[\nu_1] = \frac{1}{N} \sum_{ijk} E[y_{rr}(ijk)^2] = \frac{1}{N} \sum_{ijk} (\Sigma_{rr})(ijk),(ijk),$$

where, with slightly abuse of notation, we have used (ijk) as a row (column) index for matrix Σ_{rr}. In fact, the (ijk)-th row (column) is the row (column) corresponding to y_{ijk} is physically located in $[(j-1)bn + (i-1)n + k]$-th row (column) of the matrix. Similarly, we have

$$E[\nu_3] = \frac{1}{n^2b(b-1)s} \sum_{j} \sum_{i \neq i'} \sum_{k,k'} \sum_{j} \sum_{i \neq i'} \sum_{k,k'} E[y_{rr}(ijk)y_{rr}(i'jk')].$$

As we show in the proof of Theorem 3, the covariance matrix Σ_{rr} is given by

$$\Sigma_{rr} = \frac{\lambda}{n} (I_s \otimes \Delta_b \otimes \mathbb{I}_{n \times n}).$$

Therefore, Σ_{rr} has a block-diagonal form and its elements can be easily computed as

$$(\Sigma_{rr})(ijk),(i'j'k') = \begin{cases} \frac{(b-1)\lambda}{bn} & \text{if } i = i', j = j', k = k', \\ \frac{\lambda}{bn} & \text{if } i \neq i', j = j', \\ 0 & \text{otherwise.} \end{cases}$$

Hence, by replacing the values of the elements of Σ_{rr} from (29) in (27) and (28), we get

$$E[\hat{\lambda}] = nE[\nu_1] - nE[\nu_3] = n \frac{(b-1)\lambda}{bn} - n \frac{-\lambda}{bn} = \lambda.$$
Proof of Theorem 4

A similar proof as for one within-subject factor can be written in order to show that for two within-subject factors,

$$\Sigma_{rr} = \lambda H_{nd}. $$

In this model, η and γ are fixed effects and within-subject factors, and π is the random effect due to the subjects. To construct the test for one within-subject factor, say η, then we can show that $X_\eta = Q_s \otimes I_{b \times 1} \otimes I_{n \times 1}$, $X_\eta = I_{s \times 1} \otimes Q_b \otimes I_{n \times 1}$ and $X_{\eta\pi} = Q_s \otimes Q_b \otimes I_{n \times 1}$. Similarly to the previous proof, we can show that

$$H_{[X_\eta]} = \frac{1}{an} I_s \otimes \Delta_b \otimes I_{n \times n}, \quad H_{[X_{\eta\pi}]} = \frac{1}{an} I_s \otimes \Delta_b \otimes I_{n \times n}. $$

In order to construct Σ_{rr}, based on Equation (23), at first we have

$$\Sigma_{rr} = H_{nd}(\sigma^2_{\eta\pi} X_\pi^\prime X_{\pi} + X_{\eta\pi}^\prime \text{cov}(\eta\pi)X_{\eta\pi} + X_{\eta\gamma\pi}^\prime \text{cov}(\gamma\pi)X_{\eta\gamma\pi} + X_{\eta\gamma\pi}^\prime \text{cov}(\eta\gamma\pi)X_{\eta\gamma\pi} + \sigma^2_{\pi I_N})H_{nd}$$

It is easy to show that, H_{nd} is orthogonal to the to the spaces spanned by, X_π^\prime, $X_{\gamma\pi}^\prime$ and $X_{\eta\gamma\pi}^\prime$. For example,

$$H_{nd}(X_{\eta\gamma\pi}^\prime \text{cov}(\eta\gamma\pi)X_{\eta\gamma\pi})H_{nd}$$

$$= \frac{\sigma^2_{\eta\gamma\pi}}{(an)^2} [I_s \otimes \Delta_b \otimes I_{a \times a} \otimes I_{n \times n}](I_s \otimes \Delta_b \otimes \Delta_a \otimes I_{n \times n})(I_s \otimes \Delta_b \otimes I_{a \times a} \otimes I_{n \times n})]$$

$$= \frac{\sigma^2_{\eta\gamma\pi}}{(an)^2} [I_s \otimes \Delta_b \otimes 0 \otimes n^2 I_{n \times n}] = 0$$

The same proof can be done to show that

$$H_{nd}(\sigma^2_{\eta\pi} X_\pi^\prime X_{\pi})H_{nd} = 0, \quad H_{nd}(X_{\gamma\pi}^\prime \text{cov}(\gamma\pi)X_{\gamma\pi})H_{nd} = 0.$$

Then we can see that,

$$\Sigma_{rr} = H_{nd}(X_{\eta\pi}^\prime \text{cov}(\eta\pi)X_{\eta\pi} + \sigma^2_{\pi I_N})H_{nd} = \frac{1}{an} (an\sigma^2_{\omega} + \sigma^2_{\pi})[I_s \otimes \Delta_b \otimes I_{n \times n}]$$

which means that in repeated measures designs with two within-subject factors,

$$\Sigma_{rr} = (an\sigma^2_{\omega} + \sigma^2_{\pi})H_{nd},$$

and that $\lambda = (an\sigma^2_{\omega} + \sigma^2_{\pi})$. Based on the fact that H_{nd} is an idempotent matrix with only 0 and 1 as eigen-values, the multiplicity of the second eigen-value is equal to the rank of H_{nd} or number of (linearly independent) projection columns, which is equal to the number of columns of X_η and $X_{\eta\pi}$. We thus see that here again Σ_{rr} has a unique non-zero eigen-value λ with multiplicity $s(b - 1).$
Proof of Theorem 5

To obtain the eigen-values of \(\Sigma_{rr} \) for the mixed-model designs, for testing the between-subject factor, we first define the corresponding design matrices:

\[
X_\eta = Q_\eta \otimes 1_a \otimes 1_s \otimes 1_b \otimes 1_n, \quad X_\pi = I_a \otimes Q_s \otimes 1_b \otimes 1_n.
\]

According to these definitions we can easily calculate

\[
H_{[X_\eta]} = \frac{1}{sb}(\Delta_\eta \otimes 1_{sb \times sb}), \quad H_{[X_\pi]} = \frac{1}{nb}(I_a \otimes \Delta_\pi \otimes 1_{b \times b}) \otimes 1_n, \quad H_{nd} = \frac{1}{ab} (1_a \otimes I_s \otimes 1_{b \times b} \otimes 1_n).
\]

In order to construct \(\Sigma_{rr} \) for this model, using model (25), we define \(X_\eta^o = I_{as} \otimes 1_{nb \times 1} \) and \(X_\pi^o \text{cov}(\eta \pi) X_\eta^o = \sigma_\pi^2(I_{as} \otimes \Delta_\pi \otimes 1_{a \times n}) \) where \(\Delta_\pi = I_b - \frac{1}{b} I_{b \times b} \) and \(\text{cov}(\eta \pi) = (I_{as} \otimes \Delta_\pi)\sigma_\pi^2 \). Then \(\Sigma_{rr} \) can be written as

\[
\Sigma_{rr} = [H_{nd}(X_\eta^o I_a \sigma_\pi^2 X_\eta^o + X_\pi^o \text{cov}(\eta \pi) X_\eta^o + IN \sigma_\pi^2) H_{nd}]
= (I_{a \times a} \otimes I_{nb})((X_\eta^o I_a \sigma_\pi^2 X_\eta^o) + IN \sigma_\pi^2(I_{a \times a} \otimes I_{nb})]
= \frac{1}{abn} (bn\sigma_\pi^2 + \sigma_\pi^2)(I_{a \times a} \otimes I_s \otimes 1_{b \times b} \otimes 1_n).
\]

Using the fact that \(H_{nd} \) is orthogonal to the space spanned by the columns of \(X_\eta^o \), it can be easily shown that \(X_\eta^o \text{cov}(\eta \pi) X_\eta^o H_{nd} = 0 \). Then we have

\[
\Sigma_{rr} = (bn\sigma_\pi^2 + \sigma_\pi^2) H_{nd},
\]

which implies, \(\Sigma_{rr} \) has only one non-zero eigen-value \(\lambda \) with multiplicity equal to the total number of columns of \(X_\pi \) and \(X_\eta \) which is \((a - 1) + (s - 1) \).

Proof of Theorem 6

The proof is very similar to the one for Theorem 3. We just mention that for this case

\[
X_\eta = 1_a \otimes I_a \otimes Q_b \otimes 1_n, \quad X_\pi = 1_a \otimes Q_s \otimes Q_b \otimes 1_n.
\]

Therefore, we can show that

\[
H_{[X_\eta]} = \frac{1}{asn} (I_{a \times a} \otimes I_a \otimes \Delta_b \otimes 1_{a \times n}), \quad H_{[X_\pi]} = \frac{1}{na} (I_{a \times a} \otimes \Delta_s \otimes \Delta_b \otimes 1_{a \times n}),
\]

\[
H_{nd} = \frac{1}{an} (I_{a \times a} \otimes I_s \otimes \Delta_b \otimes 1_{a \times n})
\]

and in order to construct the \(\Sigma_{rr} \) and refer to the (25), and it can be easily shown that \(\Sigma_{rr} = (n\sigma_\pi^2 + \sigma_\pi^2) H_{nd} \). We skip the details and refer to the previous proofs, however it is worth mentioning that in this case the total number of non-zero eigenvalues of \(\Sigma_{rr} = (b - 1) + a(b - 1)(s - 1) \), which are the total number of column of matrix \(X_\eta \) and \(X_\pi \).