Supplemental Material

Cluster Analysis

Data Normalization

A z-score algorithm was applied to each analyte which returns the deviation of each data element from its mean, normalized by its standard deviation. Thus two vectors of analytes, \(r \) and \(s \), can be plotted on the same scale and their values would correspond to each sample’s deviation from the mean, zero.

The z-score transformation, \(z_i \), of the \(i \)-th element of a vector of analytes, \(r \), is:

\[
z_i = \frac{r_i - \bar{r}}{\text{std}(r)}
\]

\(\bar{r} \) and \(\text{std}(r) \) are the arithmetic mean and sample standard deviation of the vector of analytes, \(r \), respectively.

Distance Measure

The distance, \(d_{ij} \), calculation for two vectors of analytes, \(i \) and \(j \), is computed:

\[
d_{ij} = 1 - \frac{(i - \bar{i}) \cdot (j - \bar{j})^T}{\sqrt{[(i - \bar{i}) \cdot (i - \bar{i})^T]^{\frac{3}{2}}(j - \bar{j}) \cdot (j - \bar{j})^T]^{\frac{3}{2}}}
\]

\(^T \) is the matrix transposition operator, and \(\bar{i} \) and \(\bar{j} \) are the arithmetic mean of the vector of analytes \(i \) and \(j \), respectively.

Cluster Linkage

Similar analytes were organized into a binary hierarchical cluster tree using an average linkage algorithm based on their distances, \(d_{ij} \), calculated as above. At the first iteration, each cluster consisted of only one or two analytes. At the second and subsequent iterations of the algorithm two clusters, \(a \) and \(b \), with the smallest average distance, \(l_{ab} \), formed a cluster by comparing the unweighted average distance between all pairs of analytes in two clusters.
\[l_{ab} = \frac{1}{N \cdot M} \sum_{i=1}^{N} \sum_{j=1}^{M} d_{ij} \]

where \(N \) is the number of objects in cluster \(a \) and \(M \) is the number of objects in cluster \(b \), and \(a_i \) is analyte \(i \) in cluster \(a \) and \(b_j \) is analyte \(j \) in cluster \(b \), and the average linkage distance between \(a \) and \(b \) is \(l_{ab} \).

Cluster Visualization

The hierarchical, binary cluster tree defined by the distance measures were most easily understood when viewed graphically. At the first level of linkage, x-axis values between analytes were pairwise Pearson correlation coefficients. Comparisons between three or more analytes were more complex, as the linkage distances on the x-axis reflect the unweighted average Pearson correlation coefficient between all members.
Figure A1. Heat map (red: positive z-score; blue: negative z-score) of the 5+9 data set, displayed by distance (vertical axis: sampling day / subject identification; horizontal axis: endpoint).