Phosphorylation of Ser-204 and Tyr-405 in human malonyl-CoA decarboxylase expressed in silkworm *Bombyx mori* regulates catalytic decarboxylase activity

In-Wook Hwang · Yu Makishima · Tomohiro Suzuki · Tatsuya Kato · Sungjo Park · Andre Terzic · Shin-kyo Chung · Enoch Y. Park

In-Wook Hwang · Enoch Y. Park (✉)
Laboratory of Biotechnology, Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan. E-mail: park.enoch@shizuoka.ac.jp; Tel. & Fax: +81-54-2384887

Yu Makishima · Tatsuya Kato · Enoch Y. Park
Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.

Tomohiro Suzuki
Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.

Tatsuya Kato · Enoch Y. Park
Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.

Sungjo Park · Andre Terzic
Center for Regenerative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA. Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.

Shin-kyo Chung
School of Food Science and Biotechnology, Kyungpook National University, Daegu 702-701, Republic of Korea

Authors’ E-mail address;
In-Wook Hwang: gunryung21@hanmail.net (IH)
Yu Makishima: mmm.yu@live.jp (YM)
Tomohiro Suzuki: atszuk@ipc.shizuoka.ac.jp (TS)
Tatsuya Kato: atkato@ipc.shizuoka.ac.jp (TK)
Sungjo Park: park.sungjo@mayo.edu (SP)
Andre Terzic: terzic.andre@mayo.edu (AT)
Shin-kyo Chung: kchung@knu.ac.kr (SC)
Enoch Y. Park: park.enoch@shizuoka.ac.jp (EYP)
Figure S1. Malonyl-CoA decarboxylase (MCD) plays essential roles in lipid metabolism with acetyl-CoA carboxylase 1 and 2 (ACC1 and ACC2) by modulating the acetyl-CoA and malonyl-CoA in muscle, adipose and liver tissues. MCD catalyzes the conversion of malonyl-CoA to acetyl-CoA. The malonyl-CoA is an intermediate metabolite for fatty acid synthesis and acts as an inhibitor of carnitine palmitoyl transferase 1 (CPT-1) for fatty acid β-oxidation. Thus, MCD modulates the lipid metabolism by regulation of malonyl-CoA levels. Modified from Wakil and Abu-Elheiga, 2009.

Reference
Figure S2. A proposed model of malonyl-CoA decarboxylase (MCD) phosphorylation in regulating lipid metabolism. Phosphorylation of Ser-204 and Tyr-405 in MCD enhances malonyl-CoA decarboxylation by reducing malonyl-CoA levels in cytoplasm, which promotes a stimulation of long chain acryl-CoA (LCACoA) oxidation by releasing the malonyl-CoA inhibition of carnitine palmitoyl transferase 1 (CPT1). In addition to MCD dependent regulation, phosphorylation of acetyl-CoA carboxylase (ACC) by AMP-activated kinase (AMPK) or inhibition of ACC by Spot14/Mig12 diminishes malonyl-CoA levels, subsequently promoting lipid oxidation.
Figure S3. Construction of recombinant bacmid by Bac-to-Bac system and protein production using silkworms. AmpR; Ampicillin resistance, GmR; Gentamycin resistance, KmR; kanamycin resistance, TetR; tetracycline resistance, P\textsubscript{PH}; polyhedrin promoter.