Electronic supplementary material

Applied Microbiology and Biotechnology

Monitoring Bacterial Growth Using Tunable Resistive Pulse Sensing with a Pore-based Technique

Allen C.S. Yu¹, Jacky F.C. Loo¹, Samuel Yu²,³, S.K. Kong¹,**, Ting-Fung Chan¹,4,*

1. School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
2. Izon Science, PO Box 39-168, Harewood, Christchurch 8545, New Zealand
3. Lincoln University, Christchurch, New Zealand
4. State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China

* Corresponding author. Tel.: +852 39436876 Email: tf.chan@cuhk.edu.hk

** Corresponding author. Tel.: +852 39436799 Email: skkong@cuhk.edu.hk
Online Resource 1 Eight blockade events, which can be visualized as temporary decrease in the current, are shown within a 0.5 second window. The magnitude of the blockade event is proportional to the volume of the particle passing through the nanopore. The concentration of the fluid can be calculated by measuring the frequency of blockade events, with calibration using fluid with known concentration.
Online Resource 2 Microscopic images of BSU168 and DH5α growing under MG-Low and MG-High, harvested during the indicated time points.