First, we fitted simple conditional logistic regression models to analyze the crude association between each potential confounder and mortality, and variables that were significantly associated with mortality with a significance level of $P < 0.25$ were selected for inclusion in multivariable conditional logistic regression. Second, we adopted a bootstrap backward procedure to determine which of these factors were significantly associated with the outcome in multivariable models. Using this approach, 200 replicated bootstrap samples\(^1\) were selected from the original cohort. In each replicated sample, age (as a continuous variable), drug adherence and interaction terms age \(\times\) drug adherence were forced into the model, while a backward elimination of potential confounders was applied with a significance level of removal equal to 0.05. Third, only risk factors selected in at least 50% of the replicates were included as confounders in the multivariable conditional logistic regression models. The confounders included in the final models are reported in figure legends.

\(^1\) A bootstrap sample is a sample of the same size as the original dataset chosen with replacement. A given subject in the original cohort may occur multiple times, only once, or not at all in a specific bootstrap sample. Bootstrap methods assess the stability of models and are useful for determining the strength of the evidence that a given variable truly is an independent predictor of the outcome.