Multi-mycotoxin stable isotope dilution LC-MS/MS method for
Fusarium toxins in cereals

Katharina Habler and Michael Rychlik

Table S-1 Binary gradient for negative ESI mode

Table S-2 Binary gradient for positive ESI mode

Table S-3 Ion source parameter for positive and negative ESI mode

Table S-4 LC-MS/MS parameters in positive and negative ESI MRM mode

Fig. S-1 Fragmentation spectra of deoxynivalenol (DON) and DON-3-glucoside (D3G) in the positive ESI mode (DP = 50 V, CE = 20 V, EP = 10 V, and CXP = 10 V)
Table S1. Binary gradient for negative ESI mode

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>A [%] H2O + 0.1 % formic acid</th>
<th>B [%] MeOH +0.1 % formic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>99</td>
</tr>
<tr>
<td>15.5</td>
<td>1</td>
<td>99</td>
</tr>
<tr>
<td>17.5</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>27</td>
<td>90</td>
<td>10</td>
</tr>
</tbody>
</table>

Table S2. Binary gradient for positive ESI mode

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>A [%] H2O + 0.1 % formic acid</th>
<th>B [%] MeOH +0.1 % formic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>87</td>
</tr>
<tr>
<td>15</td>
<td>13</td>
<td>87</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>23.5</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>25.5</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>35</td>
<td>90</td>
<td>10</td>
</tr>
</tbody>
</table>

Table S3. Ion source parameter for positive and negative ESI mode

<table>
<thead>
<tr>
<th></th>
<th>Positive ESI mode</th>
<th>Negative ESI mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curtain gas [psi]</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>CAD gas pressure</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Ion spray voltage [eV]</td>
<td>4500</td>
<td>-4500</td>
</tr>
<tr>
<td>Spray gas [psi]</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>Dry gas [psi]</td>
<td>70</td>
<td>65</td>
</tr>
<tr>
<td>Temperature [°C]</td>
<td>450</td>
<td>525</td>
</tr>
</tbody>
</table>
Table S4. LC-MS/MS parameters in the positive (upper part of the table) and negative (lower part of the table) ESI MRM mode

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Precursor ion m/z</th>
<th>Production m/z</th>
<th>Retention time [min]</th>
<th>Declustering Potential [V]</th>
<th>Entrance Potential [V]</th>
<th>Collision Energy [V]</th>
<th>Cell Exit Potential [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DON</td>
<td>297.2</td>
<td>249.1<sup>a</sup></td>
<td>12.7</td>
<td>50</td>
<td>10</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>[13C]15-DON</td>
<td>312.1</td>
<td>263.0<sup>a</sup></td>
<td>12.7</td>
<td>50</td>
<td>10</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>231.0<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-ADON</td>
<td>339.1</td>
<td>261.1<sup>a</sup></td>
<td>13.2</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>137.1<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-ADON</td>
<td>339.1</td>
<td>213.1<sup>a</sup></td>
<td>13.2</td>
<td>50</td>
<td>10</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>231.1<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[13C]2-3-ADON</td>
<td>341.1</td>
<td>213.1<sup>a</sup></td>
<td>13.2</td>
<td>50</td>
<td>10</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>231.1<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT2-Na</td>
<td>447.2</td>
<td>385.0<sup>a</sup></td>
<td>20.5</td>
<td>111</td>
<td>10</td>
<td>28</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>285.0<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[13C]2-HT2-Na</td>
<td>469.3</td>
<td>362.3<sup>a</sup></td>
<td>14.4</td>
<td>90</td>
<td>10</td>
<td>28</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300.1<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2-Na</td>
<td>489.1</td>
<td>387.0<sup>a</sup></td>
<td>14.7</td>
<td>90</td>
<td>10</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>245.0<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[13C]2-T2-Na</td>
<td>493.1</td>
<td>391.0<sup>a</sup></td>
<td>14.7</td>
<td>90</td>
<td>10</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>245.0<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENN B</td>
<td>641.4</td>
<td>196.2<sup>a</sup></td>
<td>19.5</td>
<td>111</td>
<td>10</td>
<td>39</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>214.1<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[15N]3-ENN B</td>
<td>643.0</td>
<td>197.0<sup>a</sup></td>
<td>19.5</td>
<td>111</td>
<td>10</td>
<td>39</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>215.0<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENN B1</td>
<td>655.3</td>
<td>196.2<sup>a</sup></td>
<td>20.5</td>
<td>111</td>
<td>10</td>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>210.1<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[15N]3-ENN B1</td>
<td>657.0</td>
<td>197.0<sup>a</sup></td>
<td>20.5</td>
<td>111</td>
<td>10</td>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>211.0<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENN A1</td>
<td>669.4</td>
<td>210.2<sup>a</sup></td>
<td>21.4</td>
<td>116</td>
<td>10</td>
<td>39</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>196.2<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[15N]3-ENN A1</td>
<td>671.0</td>
<td>197.0<sup>a</sup></td>
<td>21.4</td>
<td>116</td>
<td>10</td>
<td>39</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>211.0<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENN A</td>
<td>683.4</td>
<td>210.2<sup>a</sup></td>
<td>22.3</td>
<td>106</td>
<td>10</td>
<td>39</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>228.2<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[15N]3-ENN A</td>
<td>685.0</td>
<td>211.0<sup>a</sup></td>
<td>22.3</td>
<td>106</td>
<td>10</td>
<td>39</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>229.0<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEA</td>
<td>784.3</td>
<td>244.2<sup>a</sup></td>
<td>20.3</td>
<td>116</td>
<td>10</td>
<td>37</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>262.0<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[15N]3-BEA</td>
<td>787.0</td>
<td>245.2<sup>a</sup></td>
<td>20.3</td>
<td>116</td>
<td>10</td>
<td>37</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>263.0<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUSX</td>
<td>355.1</td>
<td>247.0<sup>a</sup></td>
<td>13.0</td>
<td>90</td>
<td>10</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>175.0<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIV</td>
<td>311.0</td>
<td>281.0<sup>a</sup></td>
<td>10.7</td>
<td>−70</td>
<td>−10</td>
<td>−14</td>
<td>−7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>138.0<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DON3G</td>
<td>457.1</td>
<td>427.2<sup>a</sup></td>
<td>11.2</td>
<td>−80</td>
<td>−10</td>
<td>−20</td>
<td>−11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>247.0<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEA</td>
<td>317.2</td>
<td>131.0<sup>a</sup></td>
<td>14.5</td>
<td>−95</td>
<td>−10</td>
<td>−52</td>
<td>−10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>175.0<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Quantifier
^b Qualifier
Fig. S1.

D3G
297.2 → 249.2
297.2 → 231.5

DON
297.2 → 249.2
297.2 → 231.5