Early postnatal, but not late, exposure to chemical ambient pollutant 1,2-naphthoquinone increases susceptibility to pulmonary allergic inflammation at adulthood

Karen T. Santos¹, Juliana Florenzano¹, Leandro Rodrigues¹, Rodolfo Fávaro², Fernanda F. Ventura⁴, Marcela G. Ribeiro⁴, Simone, A. Teixeira¹, Heloisa H. A. Ferreira⁵, Susan D. Brain⁶, Amilcar S. Damazo⁷, Telma M. Zorn², Niels O. Câmar⁵, Marcelo N. Muscará¹, Jean Pierre S. Peron¹, Soraia K. Costa*¹

Departments of ¹Pharmacology, ²Cellular Biology and Development and ³Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
Fundação Jorge Duprat Figueiredo de Segurança e Medicina do Trabalho⁴, São Paulo, Brazil.
Laboratory of Inflammation Research⁵, São Francisco University, Bragança Paulista, São Paulo, Brazil.
Pharmaceutical Science Research Division⁶, Franklin-Wilkins Building, King’s College, London.
Department of Basic Science in Health⁷, Faculty of Medicine, Federal University of Mato Grosso, Mato Grosso, Brazil.

*Corresponding author:
Av Prof Lineu Prestes, 1524,
05508-900 - São Paulo, SP, Brazil.
Telefax: +55 (0)11 3091-7320
E-mail:scosta@icb.usp.br
Supplemental Fig 1. Effects of early postnatal exposure to 1,2-NQ on mast cell activation (degranulation) in the lung 24 h after the last OVA challenge. Lung parenchyma from adult (panels A-D) or neonate (panels E-H) animals were stained with toluidine blue. Black arrowheads indicate intact (not activated) mast cells, and black arrows show activated mast cells presenting cytoplasmatic granules in the extracellular matrix. Scale bar: 10 µm.