ESM Methods

Reagents and antibodies. DMSO, Akt VIII inhibitor and fish gelatin were from Sigma-Aldrich (St. Louis, MO, USA). Rapamycin was from Biomol, (Plymouth-Meeting, PA, USA). PF-4708671 was from Symansis (Timaru, NZ). Insulin was from Eli Lilly (Toronto, ON, Canada). The anti-IRS1, anti-PGC1α, anti-HNF4α, anti-S6K1, anti-G6Pase and anti-PEPCK antibodies were from Santa Cruz Biotechnology Inc. (Santa Cruz Biotechnology, Paso Robles, CA, USA). The anti-phospho-IRS-1 Ser 1101 and Ser 636/9; the anti-phospho-S6K1 Thr 389, phospho-S6 Ser 235/36, phospho-MSK1 Thr581, MSK1, phospho-Ser133 CREB, S6, CREB, Foxo, eEF2, phospho-Thr172 AMPK, AMPK and the phospho-Akt Ser 473, Thr 308 were from Cell Signaling Technologies (Danvers, MA, USA). The anti-actin was from Millipore (St. Louis, MO, USA). Antibodies from Cell Signaling Technology, were used at 1:1,000 dilution. Santa Cruz Biotechnology Inc. antibody was used at 1:500 dilution. β-actin antibody was used at 1:10,000 dilution.

Glucose uptake. L6 cells were serum-deprived during 5 h prior to the experiments, and 100 nmol/l of insulin was used to stimulate the cells during the last hour of deprivation. L6 cells were incubated for 8 min in HEPES-buffered saline containing 10 μmol/l unlabeled 2-DG and 10 μmol/l D-2-deoxy-[3H] glucose (0.5 μCi/ml). The reaction was terminated by washing three times with ice-cold 0.9% NaCl (wt/vol). Cell-associated radioactivity was determined by lysing the cells with 0.05 N NaOH, followed by liquid scintillation counting and normalization to protein concentration.
Glucose production. FAO cells were incubated 16 h in serum-free medium, with or without the indicated concentration of insulin, PF-4708671 (10 µmol/l) or rapamycin (25 nmol/l). The cells were washed three times with PBS and incubated with phenol- and glucose-free DMEM medium supplemented with 20 mmol/l sodium L-lactate and 2 mMmol/l sodium pyruvate for 5 h with or without the indicated concentration of insulin, PF-4708671 (10 µmol/l) or rapamycin (25 nmol/l). Cell supernatants were collected and glucose concentration was measured with the Amplex-Red Glucose assay kit (Invitrogen, Burlington, ON, Canada) according to the manufacturer’s instructions. Cells were lysed with 50 mmol/l NaOH and protein concentration was determined using a BCA protein assay kit for normalization.

Animal studies. Animal handling and treatment were approved by the Animal Care and Handling Committee of Laval University. 6 weeks old male C57Bl/6 mice were purchased from Charles River Laboratories (St. Constant, QC, Canada) and housed individually in cages in a room kept at 23 ± 1°C with a 12-h light/12-h dark cycle. After 1-week adaptation, mice were matched by weight and put on standard diet (Chow) or on a high fat diet (HFD, 60 % Kcal from fat, Research Diets, D12492) for 12 weeks. HFD-fed mice were then randomly assigned to three groups: control (HF) receiving vehicle (8% (vol/vol) EtOH, 0.2% (wt/vol) carboxymethylcellulose sterile), treated with PF-4708671 (35 mg kg⁻¹ day⁻¹, i.p.) or treated with rapamycin (2 mg kg⁻¹ day⁻¹, i.p.) for 7 days while being kept on the same HFD. After the treatments, mice were fasted for 6 h and euthanized 5 min after tail-vein injection of either saline or insulin (3.8 U/kg body weight). Tissues and blood were rapidly harvested and frozen in liquid nitrogen. Dual X-
ray absorptiometry (Piximus; Lunar, Madison, WI) was used to measure total fat and lean masses as well as bone mineral content in mice anesthetized with isoflurane.

RNA extraction and quantitative PCR analysis. The primer sequence used for evaluating PEPCK and G6Pase expression in FAO cells: (PEPCK; 5’-TGGGTGATGACATTGCCTGG-3’), (G6Pase; 5’-CGACTCGCTACCTCCAA GTG-3’). Data are expressed as the ratio between the expression of the target gene and the housekeeping gene 36B4 (also known as ARBP). Mouse liver (PEPCK; Mm01247058_m1), (G6Pase; Mm00839363_m1) and gene expression were evaluated with primer/probes and Taqman gene expression master mix from Life Technologies.