ESM Methods

Cell culture and transfection Pancreatic islet beta cells from adult Wistar rats (150-250 g) were isolated and cultured as described previously [1]. Briefly, rats were killed by cervical dislocation and islets were collected from the pancreas by collagenase P digestion. After short-term tissue culture (4-24 h) in RPMI 1640 medium, single β-cells were isolated by treating the islets with 0.025% trypsin (Invitrogen) for 5 min at 37°C. Cells were then washed twice in RPMI 1640 and either used for transfection or plated on poly-L-lysine-coated coverslips for culture. Transfection was performed with the Neon™ 10 μl transfection system MPK10096 (Invitrogen) following the manufacturer’s instructions. Cells were cultured for 24-72 h in RPMI 1640. For ADCY8 knockdown, experiments were performed >72 h after transfection.

Imaging An upright Zeiss LSM 710 confocal microscope was used for live imaging of the FRET indicator AKAR3 with a 40× oil-immersion objective. A laser at 405 nm was used for excitation of AKAR3, and the simultaneous 2-channel mode was used for emission detection, one channel for cyan (466-489 nm) and the other for yellow (519-535 nm). The FRET ratio ΔR was calculated as \(R = \frac{F_{YFP}}{F_{CFP}} \). ΔR changes were normalized as \(\Delta R = \Delta R' / R \), where \(\Delta R' \) is the absolute value of the FRET ratio change, to avoid variation among the basal FRET ratios in different cells. For simultaneous imaging of \(\text{Ca}^{2+} \) and FRET, cells were preloaded with Rhod-2 AM (5 μmol/l), and the switched-mode of frame-scan was used to detect the FRET and \(\text{Ca}^{2+} \) signals alternately. AKAR3 was excited at 405 nm and the emitted light was detected at
466-489 nm and 519-535 nm, and Ca\(^{2+}\) signals were detected at excitation 543 nm and emission 560-620 nm. Images (256 × 256 pixels) were acquired at 0.5 Hz. Temperature was maintained at 28-32°C using a TempModule S. Control solutions and drugs were puffed locally onto the cells during recording via a multi-channel micro-perfusion system [2].

Electrophysiology and membrane capacitance recording Whole-cell and perforated whole-cell configurations were used as described [3, 4], while the latter was used during imaging to avoid loss of fluorescence intensity due to protein leakage into the pipette. For the H-89 inhibition experiments, the intracellular solution contained 15 μmol/l H-89, which was allowed to dialyze into cells for >7 min. Healthy cells with membrane capacitance >4 pF and without Na\(^+\) currents were characterized as beta cells [1]. The standard extracellular solution contained (in mmol/l): 118 NaCl, 20 TEA-Cl, 5.6 KCl, 2.6 CaCl\(_2\)-2H\(_2\)O, 1.2 MgCl\(_2\), 5 D-glucose, 5 HEPES, pH adjusted to 7.4. The intracellular solution for conventional and perforated whole-cell patch clamp recording was (in mmol/l): 152 CsCH\(_3\)SO\(_3\), 10 CsCl, 10 KCl, 1 MgCl\(_2\), 5 HEPES, pH adjusted to 7.35 with CsOH.

Insulin release detection Insulin release from β-cells was measured by ELISA as described previously [4]. For ELISA, we used Krebs-Ringer-bicarbonate buffer containing (KRBB, in mmol/l): 5 KCl, 120 NaCl, 15 HEPES, pH 7.4, 24 NaHCO\(_3\), 1 MgCl\(_2\), 2 CaCl\(_2\), and 1 mg/ml BSA. The cells were treated with KCl for 1 min, and the incubating solutions were collected for the subsequent analysis. After 10 min incubation with KRBB (vehicle), PKA blocker (H-89), or ADCY8 blocker
(2',5'-dideoxyadenosine), the cells were treated with KCl for another 1 min. All samples were finally centrifuged at 13 000 rpm for 5 min, and the supernatants processed for insulin measurement.

Statistics All data were collected and analyzed with IGOR software (WaveMetrix, Lake Oswego, OR). The mean ± SEM was calculated, and Student’s t-test was applied to determine significance (*p <0.05; **p <0.01; ***p <0.001).

References