Fig. S1 Identification of HEK293-EGFP cell line. (a) A diagram for Cas9-mediated knock-in of EGFP into the human ROSA26 locus via HDR. SA, splice acceptor. (b) FACS analysis of HEK293-EGFP cell line. Left: HEK293 WT cell line, right: HEK293-EGFP cell line. (c) Knock-in pattern analysis of HEK293-EGFP cell line by PCR. 5F1+5R1 were used for detecting 5-ARM, and 3F2+3R2 detecting 3-ARM. (d) Fluorescence microscopy of HEK293-EGFP cell line. Scale bar, 20 μm.
Fig. S2 The EGFP disruption efficiency of Cpf1-gRNA tRNA with the same tRNA sequence but different 5’ leader sequence were measured by FACS analysis. Error bars indicate s.e.m. (n = 3 independent experiments).
The targeting efficiency of Cpf1-gRNA for EGFP harboring single or two mismatches in positions 1 through 21 were measured by FACS analysis. Error bars indicate s.e.m. (n = 3 independent experiments).
Fig. S4

(a) EGFP spacer length from 16 bp to 30 bp. (b) EGFP disruption rate analysis by FACS.

Fig. S4 Effect of EGFP spacer length on AsCpf1 cleavage activity. (a) EGFP spacer length from 16 bp to 30 bp. (b) EGFP disruption rate analysis by FACS.
Fig. S5 Cpf1-gRNA_{trRNA} system mediated efficiently genome editing in human cells and mammal embryos. (a) Schematic depiction of the AsCpf1 and gRNA_{trRNA} transcription plasmid. (b) Target sequences of gRNAs used to target human and porcine endogenous gene in this study.
Fig. S6 Genome editing of \textit{WRN} gene in rabbits embryos via the Cpf1-gRNA system. (a) Two target sites in the rabbit \textit{WRN} locus at exons 4 and 6, respectively. The target sequence and PAM are indicated by red and green. (b) Genotype of rabbit blastocysts injection AsCpf1 mRNA and \textit{WRN} Exon 4 gRNA.
Fig. S7 Mutation patterns analysis of rabbit blastocysts when co-injection E4-gRNA and E6-gRNA with AsCpf1 mRNA. (a) Agarose gel electrophoresis assay were performed to identify WRN large fragment deletion in collected blastocysts. Embryos 3#, 5#, 6#, and 11# harbored large fragment deletion. (b) T-cloning and Sanger sequencing of deletion of WRN in 3#, 5#, 6#, and 11# embryos. PAM sites are highlighted in green; target sequences are red. (c) and (d) T-cloning and Sanger sequencing of the target site for each gRNA in injected embryos. PAM sites are labeled in green; target sequences are red.
Fig. S8 Genotype of PA porcine embryos injected with Cpf1-gRNA_{rRNA} system targeting porcine DMD and PLN loci.
Fig. S9 Genotype analysis of selected PFF individual colonies. (a) Genotype of *DMD* mutant colonies. The WT sequence is shown at the top. The target sequence and PAM are indicated by red and green, respectively. (b) Identification of selected colonies by PCR-Sal I digestion. No. 39 and 97 colony can be digested by Sal I restriction enzyme. (c) Genotype of *PLN* \(^{R14del}\) mutant colonies carrying point mutations. (d) Sanger sequencing of the target sites in the two *PLN* \(^{R14del}\) mutant colonies.
Fig. S10 Sanger sequencing of the target sites in all DMD KO (a) and PLN^{R14del} (b) cloned pigs.