Sequence attributes of 500 FKBDs of the FKBPs from disparate species.

In sectors: A is given code and sequence length; in B sequence indexes of the aligned FKBD and its length; in C are given the theoretical pI of the FKBD and the pI of the entire sequence (in parentheses); in sector D is the overall hydrophobicity index (HI) for the FKBD and the entire sequence (in parentheses); in sector E is the mass of the aligned FKBD and of that of the entire sequence (in parentheses).

<table>
<thead>
<tr>
<th>No. Entry-Code</th>
<th>Seq-Length</th>
<th>FKBD</th>
<th>aligned</th>
<th>pI FKBD (Total)</th>
<th>HI</th>
<th>FKBD (Total)</th>
<th>Mass</th>
<th>FKBD (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>108AA, Alg =108A</td>
<td>1-108</td>
<td>8.6</td>
<td>25.9</td>
<td>12.0</td>
<td>25.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>108AA, Alg =108A</td>
<td>1-108</td>
<td>8.8</td>
<td>29.6</td>
<td>7.8</td>
<td>29.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>108AA, Alg =106A</td>
<td>1-108</td>
<td>8.7</td>
<td>26.6</td>
<td>7.8</td>
<td>26.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>108AA, Alg =108A</td>
<td>1-108</td>
<td>9.6</td>
<td>38.0</td>
<td>12.0</td>
<td>38.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>108AA, Alg =108A</td>
<td>1-108</td>
<td>5.6</td>
<td>41.7</td>
<td>12.0</td>
<td>41.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>108AA, Alg =104A</td>
<td>1-108</td>
<td>5.7</td>
<td>13.2</td>
<td>12.0</td>
<td>13.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>108AA, Alg =106A</td>
<td>1-108</td>
<td>9.9</td>
<td>22.6</td>
<td>12.0</td>
<td>22.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>108AA, Alg =104A</td>
<td>1-108</td>
<td>9.5</td>
<td>35.6</td>
<td>12.0</td>
<td>35.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>108AA, Alg =104A</td>
<td>1-108</td>
<td>5.8</td>
<td>45.1</td>
<td>12.0</td>
<td>45.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>108AA, Alg =106A</td>
<td>1-108</td>
<td>7.3</td>
<td>35.8</td>
<td>12.0</td>
<td>35.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>108AA, Alg =104A</td>
<td>1-108</td>
<td>6.2</td>
<td>30.8</td>
<td>12.0</td>
<td>30.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Amino Acids</td>
<td>Predicted Protein Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAB20974.4</td>
<td>582 AAs</td>
<td>peptidyl-prolyl cis-trans isomerase FKBP10 precursor [Homo sapiens]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP009201</td>
<td>570 AAs</td>
<td>FK506 binding protein 9; rotamase; peptidyl-prolyl cis-trans [Monosiga brevicollis MX1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP009201.1</td>
<td>570 AAs</td>
<td>FK506 binding protein 9; rotamase; peptidyl-prolyl cis-trans [Monosiga brevicollis MX1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP009201.3</td>
<td>570 AAs</td>
<td>FK506 binding protein 9; rotamase; peptidyl-prolyl cis-trans [Monosiga brevicollis MX1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP_056073</td>
<td>322 AAs</td>
<td>FK506 binding protein precursor; FK506 binding protein 11 (19 kDa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP_056073</td>
<td>1219 AAs</td>
<td>FK506-binding protein 15 [Homo sapiens]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP_036313</td>
<td>413 AAs</td>
<td>peptidyl-prolyl cis-trans isomerase FKBP8 [Homo sapiens]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP_001128683</td>
<td>322 AAs</td>
<td>peptidyl-prolyl cis-trans isomerase FKBP6 isoform b [Homo sapiens]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U31913.1</td>
<td>113 AAs</td>
<td>HBV-X associated protein - Homo sapiens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FK37_HUMAN</td>
<td>107 AAs</td>
<td>384-ARYL-HYDROCARBON INTERACTING PROTEIN-LIKE 1 - Q9NZN9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDQ90188</td>
<td>393 AAs</td>
<td>predicted protein [Monosiga brevicollis MX1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDQ88301</td>
<td>213 AAs</td>
<td>predicted protein [Monosiga brevicollis MX1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDQ88213</td>
<td>443 AAs</td>
<td>predicted protein [Monosiga brevicollis MX1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDQ85838</td>
<td>193 AAs</td>
<td>predicted protein [Monosiga brevicollis MX1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDQ85159</td>
<td>164 AAs</td>
<td>predicted protein [Monosiga brevicollis MX1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene Accession</td>
<td>Length (AAs)</td>
<td>Signal Peptide (Alg)</td>
<td>pI</td>
<td>HI</td>
<td>Mass kDa</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-----</td>
<td>--------</td>
<td>----------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002109958</td>
<td>1075</td>
<td>172-282</td>
<td>7.1</td>
<td>32.4</td>
<td>12.2</td>
<td>hypothetical protein TRIADDRAFT_53397 [Trichoplax adhaerens]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002108502</td>
<td>441</td>
<td>25-131</td>
<td>5.7</td>
<td>37.4</td>
<td>11.7</td>
<td>hypothetical protein TRIADDRAFT_51478 [Trichoplax adhaerens]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002113946</td>
<td>113</td>
<td>5-113</td>
<td>9.9</td>
<td>31.2</td>
<td>12.0</td>
<td>hypothetical protein TRIADDRAFT_50462 [Trichoplax adhaerens]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002111423</td>
<td>96</td>
<td>1-91</td>
<td>5.5</td>
<td>24.2</td>
<td>10.1</td>
<td>hypothetical protein TRIADDRAFT_0123 [Trichoplax adhaerens]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_00218278</td>
<td>292</td>
<td>1-102</td>
<td>4.2</td>
<td>35.3</td>
<td>11.7</td>
<td>hypothetical protein TRIADDRAFT_62317 [Trichoplax adhaerens]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002119047</td>
<td>289</td>
<td>1-98</td>
<td>4.9</td>
<td>37.8</td>
<td>10.6</td>
<td>hypothetical protein TRIADDRAFT_63015 [Trichoplax adhaerens]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002114988</td>
<td>324</td>
<td>5-117</td>
<td>7.3</td>
<td>35.4</td>
<td>12.8</td>
<td>hypothetical protein TRIADDRAFT_59051 [Trichoplax adhaerens]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002113582</td>
<td>142</td>
<td>32-137</td>
<td>9.8</td>
<td>24.5</td>
<td>11.6</td>
<td>expressed hypothetical protein [Trichoplax adhaerens]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002111046</td>
<td>589</td>
<td>280-383</td>
<td>5.0</td>
<td>54.8</td>
<td>11.1</td>
<td>hypothetical protein TRIADDRAFT_63767 [Trichoplax adhaerens]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002165957</td>
<td>213</td>
<td>38-135</td>
<td>6.1</td>
<td>22.4</td>
<td>11.1</td>
<td>PREDICTED: similar to GJ22316 [Hydra magnipapillata].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002156712</td>
<td>268</td>
<td>33-140</td>
<td>8.2</td>
<td>32.4</td>
<td>12.1</td>
<td>PREDICTED: similar to FK506 binding protein 9 [Hydra]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002154951</td>
<td>154</td>
<td>47-153</td>
<td>5.4</td>
<td>29.9</td>
<td>11.7</td>
<td>PREDICTED: similar to peptidyl-prolyl cis-trans isomerase,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002168693</td>
<td>569</td>
<td>94-202</td>
<td>9.8</td>
<td>39.4</td>
<td>12.2</td>
<td>PREDICTED: similar to FK506 binding protein 15, 133kDa, partial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002155592</td>
<td>107</td>
<td>1-107</td>
<td>9.4</td>
<td>14.0</td>
<td>11.7</td>
<td>PREDICTED: similar to FKB12 [Hydra magnipapillata].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002164365</td>
<td>268</td>
<td>79-182</td>
<td>10.2</td>
<td>30.8</td>
<td>11.8</td>
<td>PREDICTED: similar to predicted protein [Hydra magnipapillata].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002154321</td>
<td>214</td>
<td>38-135</td>
<td>5.7</td>
<td>39.8</td>
<td>11.0</td>
<td>PREDICTED: similar to predicted protein [Hydra magnipapillata].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Amino Acids</td>
<td>Predicted Length</td>
<td>Predicted PI</td>
<td>Predicted pI</td>
<td>Predicted Mass</td>
<td>Predicted Similarity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002164353</td>
<td>407</td>
<td>20-126</td>
<td>Alg = 107AA</td>
<td>pI 5.3 (6.1)</td>
<td>HI 29.9 (24.8)</td>
<td>Mass kDa 12.0 (46.5)</td>
<td>Predicted: similar to FK506 binding protein 5 [Hydra magnipapillata].</td>
<td></td>
</tr>
<tr>
<td>XP_002163230</td>
<td>389</td>
<td>282-381</td>
<td>Alg = 100AA</td>
<td>pI 5.6 (6.5)</td>
<td>HI 33.0 (38.6)</td>
<td>Mass kDa 11.3 (43.7)</td>
<td>Predicted: similar to FK506 binding protein 9 [Hydra magnipapillata].</td>
<td></td>
</tr>
<tr>
<td>XP_002167164</td>
<td>466</td>
<td>106-213</td>
<td>Alg = 108AA</td>
<td>pI 9.3 (5.5)</td>
<td>HI 33.3 (23.4)</td>
<td>Mass kDa 12.0 (53.5)</td>
<td>Predicted: similar to predicted protein [Hydra magnipapillata].</td>
<td></td>
</tr>
<tr>
<td>XP_002166401</td>
<td>852</td>
<td>179-287</td>
<td>Alg = 109AA</td>
<td>pI 9.5 (5.6)</td>
<td>HI 39.4 (20.1)</td>
<td>Mass kDa 12.2 (95.9)</td>
<td>Predicted: similar to predicted protein [Hydra magnipapillata].</td>
<td></td>
</tr>
<tr>
<td>XP_002162221</td>
<td>282</td>
<td>34-134</td>
<td>Alg = 101AA</td>
<td>pI 5.7 (4.3)</td>
<td>HI 33.7 (24.5)</td>
<td>Mass kDa 11.0 (32.1)</td>
<td>Predicted: similar to GM15719 [Hydra magnipapillata].</td>
<td></td>
</tr>
<tr>
<td>XP_002160252</td>
<td>204</td>
<td>126-204</td>
<td>Alg = 79AA</td>
<td>pI 4.6 (4.4)</td>
<td>HI 54.4 (25.5)</td>
<td>Mass kDa 8.6 (22.6)</td>
<td>Predicted: similar to SJCHGC02834 protein, partial [Hydra magnipapillata].</td>
<td></td>
</tr>
</tbody>
</table>

60 XP_001623432 | 100 | 1-100 | Alg = 100AA | pI 9.2 (9.2) | HI 27.0 (27.0) | Mass kDa 9.8 (9.8) | Predicted protein [Nematostella vectensis]. |
<p>| XP_001626518 | 198 | 5-111 | Alg = 107AA | pI 6.3 (5.3) | HI 30.8 (18.7) | Mass kDa 11.8 (22.4) | Predicted protein [Nematostella vectensis]. |
| EDO44761 | 214 | 38-145 | Alg = 108AA | pI 5.0 (4.4) | HI 50.9 (37.9) | Mass kDa 12.1 (24.4) | Predicted protein [Nematostella vectensis]. |
| EDO44176 | 400 | 120-224 | Alg = 105AA | pI 8.1 (4.9) | HI 32.4 (20.8) | Mass kDa 11.9 (45.8) | Predicted protein [Nematostella vectensis]. |
| EDO44175 | 326 | 10-124 | Alg = 115AA | pI 8.8 (6.7) | HI 21.7 (25.5) | Mass kDa 13.4 (37.6) | Predicted protein [Nematostella vectensis]. |
| XP_001623432 | 100 | 1-100 | Alg = 100AA | pI 9.1 (9.1) | HI 22.0 (22.0) | Mass kDa 10.7 (10.7) | Predicted protein [Nematostella vectensis]. |</p>
<table>
<thead>
<tr>
<th>Accession</th>
<th>Length (AAs)</th>
<th>Start/Stop (Alg)</th>
<th>PI</th>
<th>MW (kDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBA33043</td>
<td>117</td>
<td>6-116/111</td>
<td>5.5</td>
<td>11.7</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBA33261</td>
<td>185</td>
<td>40-160/121</td>
<td>4.0</td>
<td>13.2</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBA31432</td>
<td>103</td>
<td>1-103/103</td>
<td>10.0</td>
<td>10.4</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBA27919</td>
<td>167</td>
<td>1-120/120</td>
<td>4.5</td>
<td>13.0</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002128827</td>
<td>577</td>
<td>143-247/105</td>
<td>4.8</td>
<td>11.9</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002128086</td>
<td>220</td>
<td>108-220/113</td>
<td>9.9</td>
<td>12.7</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAC82550</td>
<td>94</td>
<td>1-94/94</td>
<td>9.7</td>
<td>10.2</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002125408</td>
<td>943</td>
<td>260-380/121</td>
<td>5.5</td>
<td>13.9</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002128893</td>
<td>381</td>
<td>100-207/108</td>
<td>7.2</td>
<td>12.0</td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002122987</td>
<td>142</td>
<td>25-131/107</td>
<td>9.3</td>
<td>11.5</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002127819</td>
<td>222</td>
<td>40-144/105</td>
<td>5.2</td>
<td>11.7</td>
</tr>
<tr>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002119960</td>
<td>616</td>
<td>304-407/104</td>
<td>4.4</td>
<td>11.5</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_781995</td>
<td>208</td>
<td>22-133/112</td>
<td>7.1</td>
<td>12.6</td>
</tr>
<tr>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_788955</td>
<td>328</td>
<td>11-122/112</td>
<td>8.4</td>
<td>12.9</td>
</tr>
<tr>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_001177639</td>
<td>192</td>
<td>34-140/107</td>
<td>4.7</td>
<td>11.8</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_792687</td>
<td>393</td>
<td>84-188/105</td>
<td>4.7</td>
<td>11.6</td>
</tr>
<tr>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_781282</td>
<td>422</td>
<td>37-144/108</td>
<td>8.6</td>
<td>12.0</td>
</tr>
<tr>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_001192603</td>
<td>206AAs</td>
<td>110-206/Alg = 97AA</td>
<td>pI 9.7 (4.4)</td>
<td>HI 36.1 (22.3)</td>
</tr>
<tr>
<td></td>
<td>[Strongylocentrotus similar to 36 kDa FK506 binding protein, partial]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_001199232</td>
<td>77AAs</td>
<td>1-77/Alg = 77AA</td>
<td>pI 9.1 (9.1)</td>
<td>HI 35.1 (35.1)</td>
</tr>
<tr>
<td></td>
<td>[Strongylocentrotus similar to putative FK506-binding protein, partial]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_791717</td>
<td>546AAs</td>
<td>401-506/Alg = 106AA</td>
<td>pI10.0 (4.7)</td>
<td>HI 31.1 (16.5)</td>
</tr>
<tr>
<td></td>
<td>[Strongylocentrotus similar to conserved hypothetical protein]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_785999</td>
<td>142AAs</td>
<td>36-135/Alg = 100AA</td>
<td>pI 7.0 (8.7)</td>
<td>HI 26.0 (30.3)</td>
</tr>
<tr>
<td></td>
<td>PREDICTED: similar to MGC53657 protein [Strongylocentrotus]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002591360</td>
<td>155AAs</td>
<td>1-103/Alg = 103AA</td>
<td>pI 9.8 (10.4)</td>
<td>HI 44.7 (44.5)</td>
</tr>
<tr>
<td></td>
<td>hypothetical protein BRAFLDRAFT_76829 [Branchiostoma floridae]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002610751</td>
<td>136AAs</td>
<td>5-112/Alg = 108AA</td>
<td>pI 9.7 (8.8)</td>
<td>HI 37.0 (44.1)</td>
</tr>
<tr>
<td></td>
<td>hypothetical protein BRAFLDRAFT_126086 [Branchiostoma floridae]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002612027</td>
<td>263AAs</td>
<td>6-90/Alg = 85AA</td>
<td>pI 5.0 (6.5)</td>
<td>HI 27.1 (22.8)</td>
</tr>
<tr>
<td></td>
<td>hypothetical protein BRAFLDRAFT_59716 [Branchiostoma floridae]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002595400</td>
<td>423AAs</td>
<td>300-423/Alg = 124AA</td>
<td>pI10.3 (4.4)</td>
<td>HI 23.4 (15.4)</td>
</tr>
<tr>
<td></td>
<td>hypothetical protein BRAFLDRAFT_119019 [Branchiostoma floridae]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002586543</td>
<td>131AAs</td>
<td>23-131/Alg = 109AA</td>
<td>pI 5.2 (7.1)</td>
<td>HI 38.5 (41.2)</td>
</tr>
<tr>
<td></td>
<td>hypothetical protein BRAFLDRAFT_249173 [Branchiostoma floridae]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002609450</td>
<td>718AAs</td>
<td>168-277/Alg = 110AA</td>
<td>pI10.1 (6.2)</td>
<td>HI 31.8 (20.2)</td>
</tr>
<tr>
<td></td>
<td>hypothetical protein BRAFLDRAFT_226607 [Branchiostoma floridae]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002606032</td>
<td>283AAs</td>
<td>26-132/Alg = 107AA</td>
<td>pI 6.4 (4.7)</td>
<td>HI 31.8 (32.2)</td>
</tr>
<tr>
<td></td>
<td>hypothetical protein BRAFLDRAFT_100940 [Branchiostoma floridae]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002606030</td>
<td>249AAs</td>
<td>52-157/Alg = 106AA</td>
<td>pI 5.5 (4.6)</td>
<td>HI 26.4 (30.1)</td>
</tr>
<tr>
<td></td>
<td>hypothetical protein BRAFLDRAFT_129519 [Branchiostoma floridae]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002601637</td>
<td>389AAs</td>
<td>103-207/Alg = 105AA</td>
<td>pI 4.3 (4.7)</td>
<td>HI 32.4 (21.6)</td>
</tr>
<tr>
<td></td>
<td>hypothetical protein BRAFLDRAFT_85785 [Branchiostoma floridae]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002594856</td>
<td>311AAs</td>
<td>127-234/Alg = 108AA</td>
<td>pI 9.6 (4.5)</td>
<td>HI 36.1 (21.9)</td>
</tr>
<tr>
<td></td>
<td>hypothetical protein BRAFLDRAFT_86023 [Branchiostoma floridae]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002590072</td>
<td>786AAs</td>
<td>184-283/Alg = 100AA</td>
<td>pI 5.0 (9.3)</td>
<td>HI 33.0 (36.3)</td>
</tr>
<tr>
<td></td>
<td>hypothetical protein BRAFLDRAFT_123439 [Branchiostoma floridae]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAAA68610</td>
<td>108AAs</td>
<td>3-108/Alg = 106AA</td>
<td>pI 9.3 (9.2)</td>
<td>HI 31.1 (32.4)</td>
</tr>
<tr>
<td></td>
<td>rotamase [Caenorhabitis elegans]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP_502056</td>
<td>139AAs</td>
<td>34-133/Alg = 100AA</td>
<td>pI 7.2 (7.2)</td>
<td>HI 27.0 (30.2)</td>
</tr>
<tr>
<td></td>
<td>FK506 Binding protein family FKB-1 (15.5 kD) (fkb-1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Length</td>
<td>MW (kDa)</td>
<td>pI</td>
<td>pI E. coli</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>100 NP_506197</td>
<td>259</td>
<td>11.2</td>
<td>10.3</td>
<td>7.2</td>
</tr>
<tr>
<td>101 NP_491258</td>
<td>264</td>
<td>11.5</td>
<td>8.6</td>
<td>8.6</td>
</tr>
<tr>
<td>102 NP_493257</td>
<td>290</td>
<td>10.6</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>103 NP_493256</td>
<td>304</td>
<td>10.5</td>
<td>8.6</td>
<td>8.6</td>
</tr>
<tr>
<td>104 NP_508026</td>
<td>431</td>
<td>11.5</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>105 NP_504835</td>
<td>261</td>
<td>10.6</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>106 NP_492792</td>
<td>319</td>
<td>11.5</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>107 NP_523792</td>
<td>185</td>
<td>10.6</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>108 F54674.1</td>
<td>138</td>
<td>10.6</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>109 F46726.1</td>
<td>216</td>
<td>10.6</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>110 F55172.1</td>
<td>349</td>
<td>10.6</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>111 Q8IR85</td>
<td>331</td>
<td>10.6</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>112 F52818.1</td>
<td>439</td>
<td>10.6</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>113 F53070.1</td>
<td>455</td>
<td>10.6</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>114 XP_080945</td>
<td>397</td>
<td>10.6</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>115 NP_014264</td>
<td>114</td>
<td>10.6</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>116 NP_010807</td>
<td>135</td>
<td>10.6</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>117 NP_013554</td>
<td>392</td>
<td>10.6</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>Accession</td>
<td>Length</td>
<td>Score</td>
<td>PI</td>
<td>H Index</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>NP_013637</td>
<td>411AAs</td>
<td></td>
<td>10.5</td>
<td>23.4</td>
</tr>
<tr>
<td>NP_595257</td>
<td>112AAs</td>
<td></td>
<td>7.1</td>
<td>28.6</td>
</tr>
<tr>
<td>NP_596694</td>
<td>361AAs</td>
<td></td>
<td>10.4</td>
<td>26.6</td>
</tr>
<tr>
<td>NP_591335</td>
<td>362AAs</td>
<td></td>
<td>10.5</td>
<td>23.8</td>
</tr>
<tr>
<td>NP_037234</td>
<td>108AAs</td>
<td></td>
<td>8.7</td>
<td>32.4</td>
</tr>
<tr>
<td>XP_001361144</td>
<td>108AAs</td>
<td></td>
<td>8.7</td>
<td>26.9</td>
</tr>
<tr>
<td>NP_001005594</td>
<td>108AAs</td>
<td></td>
<td>8.2</td>
<td>26.9</td>
</tr>
<tr>
<td>NP_595536</td>
<td>108AAs</td>
<td></td>
<td>9.6</td>
<td>24.1</td>
</tr>
<tr>
<td>XP_001365575</td>
<td>108AAs</td>
<td></td>
<td>9.6</td>
<td>24.1</td>
</tr>
<tr>
<td>XP_002718212</td>
<td>224AAs</td>
<td></td>
<td>9.9</td>
<td>25.2</td>
</tr>
<tr>
<td>NP_001033201</td>
<td>224AAs</td>
<td></td>
<td>9.9</td>
<td>25.2</td>
</tr>
<tr>
<td>XP_002928813</td>
<td>224AAs</td>
<td></td>
<td>9.9</td>
<td>25.2</td>
</tr>
<tr>
<td>XP_001368755</td>
<td>224AAs</td>
<td></td>
<td>9.9</td>
<td>25.2</td>
</tr>
<tr>
<td>NP_001100206</td>
<td>224AAs</td>
<td></td>
<td>9.9</td>
<td>27.0</td>
</tr>
<tr>
<td>XP_001096116</td>
<td>224AAs</td>
<td></td>
<td>9.9</td>
<td>25.9</td>
</tr>
<tr>
<td>EDL36648</td>
<td>233AAs</td>
<td></td>
<td>9.9</td>
<td>27.0</td>
</tr>
<tr>
<td>NP_001071238</td>
<td>220AAs</td>
<td></td>
<td>9.8</td>
<td>21.7</td>
</tr>
<tr>
<td>Accession</td>
<td>Length/Protein</td>
<td>pI</td>
<td>HI</td>
<td>Mass kDa</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>-----</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>NP_001016623</td>
<td>225AAs</td>
<td>111-225/Alg = 115AA</td>
<td>pI 9.8 (9.3)</td>
<td>HI 24.3 (16.0)</td>
</tr>
<tr>
<td>XP_002713033</td>
<td>227AAs</td>
<td>110-227/Alg = 118AA</td>
<td>pI10.0 (9.8)</td>
<td>HI 26.3 (18.5)</td>
</tr>
<tr>
<td>ADD027839</td>
<td>220AAs</td>
<td>106-220/Alg = 115AA</td>
<td>pI10.0 (9.5)</td>
<td>HI 32.2 (21.8)</td>
</tr>
<tr>
<td>NP_001187895</td>
<td>220AAs</td>
<td>106-220/Alg = 115AA</td>
<td>pI 9.7 (9.3)</td>
<td>HI 30.4 (20.9)</td>
</tr>
<tr>
<td>ACO008578</td>
<td>220AAs</td>
<td>106-220/Alg = 115AA</td>
<td>pI 9.9 (7.4)</td>
<td>HI 25.2 (20.5)</td>
</tr>
<tr>
<td>NP_001128507</td>
<td>225AAs</td>
<td>111-225/Alg = 115AA</td>
<td>pI 9.9 (9.2)</td>
<td>HI 27.0 (17.8)</td>
</tr>
<tr>
<td>ACO09720</td>
<td>219AAs</td>
<td>105-219/Alg = 115AA</td>
<td>pI10.0 (8.4)</td>
<td>HI 20.9 (16.9)</td>
</tr>
<tr>
<td>NP_001187895</td>
<td>220AAs</td>
<td>106-220/Alg = 115AA</td>
<td>pI 9.7 (9.3)</td>
<td>HI 30.4 (20.9)</td>
</tr>
<tr>
<td>XP_002741406</td>
<td>231AAs</td>
<td>119-231/Alg = 113AA</td>
<td>pI10.1 (9.6)</td>
<td>HI 31.0 (23.4)</td>
</tr>
<tr>
<td>ACH45546</td>
<td>225Aas</td>
<td>111-225/Alg = 115AA</td>
<td>pI 9.9 (9.7)</td>
<td>HI 20.9 (19.1)</td>
</tr>
<tr>
<td>NP_989972</td>
<td>227Aas</td>
<td>113-227/Alg = 115AA</td>
<td>pI 9.9 (9.6)</td>
<td>HI 21.7 (17.6)</td>
</tr>
<tr>
<td>EFB16870</td>
<td>209AAs</td>
<td>110-209/Alg = 100AA</td>
<td>pI10.2 (9.9)</td>
<td>HI 20.0 (14.8)</td>
</tr>
<tr>
<td>NP_001187895</td>
<td>220AAs</td>
<td>106-220/Alg = 115AA</td>
<td>pI 9.7 (9.3)</td>
<td>HI 30.4 (20.9)</td>
</tr>
<tr>
<td>XP_849864</td>
<td>225Aas</td>
<td>110-225/Alg = 116AA</td>
<td>pI 9.9 (9.5)</td>
<td>HI 29.3 (23.1)</td>
</tr>
<tr>
<td>ACH45546</td>
<td>225Aas</td>
<td>111-225/Alg = 115AA</td>
<td>pI 9.9 (9.7)</td>
<td>HI 20.9 (19.1)</td>
</tr>
<tr>
<td>NP_989972</td>
<td>227Aas</td>
<td>113-227/Alg = 115AA</td>
<td>pI 9.9 (9.6)</td>
<td>HI 21.7 (17.6)</td>
</tr>
<tr>
<td>EFB16870</td>
<td>209AAs</td>
<td>110-209/Alg = 100AA</td>
<td>pI10.2 (9.9)</td>
<td>HI 20.0 (14.8)</td>
</tr>
<tr>
<td>XP_001187895</td>
<td>220AAs</td>
<td>106-220/Alg = 115AA</td>
<td>pI 9.7 (9.3)</td>
<td>HI 30.4 (20.9)</td>
</tr>
<tr>
<td>XP_001514665</td>
<td>197AAs</td>
<td>83-197/Alg = 115AA</td>
<td>pI 9.8 (9.8)</td>
<td>HI 26.1 (19.3)</td>
</tr>
<tr>
<td>XP_003121834</td>
<td>122AAs</td>
<td>8-122/Alg = 115AA</td>
<td>pI 9.9 (9.8)</td>
<td>HI 26.1 (26.2)</td>
</tr>
<tr>
<td>XP_002841382</td>
<td>108AAs</td>
<td>1-108/Alg = 108AA</td>
<td>pI 7.5 (7.5)</td>
<td>HI 37.0 (37.0)</td>
</tr>
<tr>
<td>ACO12672</td>
<td>108AAs</td>
<td>3-108/Alg = 106AA</td>
<td>pI 8.2 (8.2)</td>
<td>HI 28.3 (28.7)</td>
</tr>
</tbody>
</table>

hypothesised protein LOC549377 [Xenopus tropicalis].
<table>
<thead>
<tr>
<th>Accession</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP_001033089</td>
<td>108 AAs</td>
</tr>
<tr>
<td>XP_969563</td>
<td>similar to FK506-binding protein-like protein [Tribolium]</td>
</tr>
<tr>
<td>AAH41748</td>
<td>28-133/Alg =106AA</td>
</tr>
<tr>
<td>XP_001364013</td>
<td>similar to KIAA0528 protein [Monodelphis domestica].</td>
</tr>
<tr>
<td>NP_001133141</td>
<td>108 AAs</td>
</tr>
<tr>
<td>ACO10770</td>
<td>FK506 binding protein [Xenopus laevis].</td>
</tr>
<tr>
<td>NP_001040382</td>
<td>108 AAs</td>
</tr>
<tr>
<td>CBK24849</td>
<td>unnamed protein product [Blastocystis hominis].</td>
</tr>
<tr>
<td>ACH45584</td>
<td>3-108/Alg =106AA</td>
</tr>
<tr>
<td>AAI02339</td>
<td>FKBP1B protein [Bos taurus].</td>
</tr>
<tr>
<td>XP_851390</td>
<td>4-109/Alg =106AA</td>
</tr>
<tr>
<td>ABK15648</td>
<td>FKBP12 [Bombyx mori].</td>
</tr>
<tr>
<td>NP_001040382</td>
<td>3-108/Alg =106AA</td>
</tr>
<tr>
<td>CBK24849</td>
<td>FK506-binding protein [Bombyx mori].</td>
</tr>
<tr>
<td>XP_5011390</td>
<td>109 AAs</td>
</tr>
<tr>
<td>NP_011004098</td>
<td>similar to FK506-binding protein 1A [Canis familiaris].</td>
</tr>
<tr>
<td>AAH41748</td>
<td>FK506-binding protein [Bombyx mori].</td>
</tr>
<tr>
<td>NP_001133141</td>
<td>3-108/Alg =106AA</td>
</tr>
<tr>
<td>ACO10770</td>
<td>peptidyl-prolyl cis-trans isomerase FKBP1B [Salmo salar].</td>
</tr>
<tr>
<td>XP_320351</td>
<td>108 AAs</td>
</tr>
<tr>
<td>CBK24849</td>
<td>ENSANGF00000014046 [Anopheles gambiae str. PEST].</td>
</tr>
<tr>
<td>XP_00205721</td>
<td>3-108/Alg =106AA</td>
</tr>
<tr>
<td>NP_01096492</td>
<td>FK506 binding protein 1B, 12.6 kDa [Xenopus (Silurana) tropicalis].</td>
</tr>
<tr>
<td>NP_001033089</td>
<td>108 AAs</td>
</tr>
<tr>
<td>NP_011096614</td>
<td>FK506 binding protein 1A, 12kDa [Gallus gallus].</td>
</tr>
<tr>
<td>NP_001079382</td>
<td>108 AAs</td>
</tr>
<tr>
<td>XP_320351</td>
<td>peptidyl-prolyl cis-trans isomerase FKBP1A [Xenopus laevis].</td>
</tr>
<tr>
<td>ABK15648</td>
<td>FKBP12 [Bombyx mori].</td>
</tr>
<tr>
<td>XP_001364013</td>
<td>108 AAs</td>
</tr>
<tr>
<td>XP_001364013</td>
<td>FK506 binding protein [Bos taurus].</td>
</tr>
<tr>
<td>XP_001364013</td>
<td>108 AAs</td>
</tr>
<tr>
<td>XP_001364013</td>
<td>FK506 binding protein [Bos taurus].</td>
</tr>
<tr>
<td>XP_001364013</td>
<td>108 AAs</td>
</tr>
<tr>
<td>XP_001364013</td>
<td>FK506 binding protein [Bos taurus].</td>
</tr>
<tr>
<td>XP_001364013</td>
<td>108 AAs</td>
</tr>
<tr>
<td>XP_001364013</td>
<td>FK506 binding protein [Bos taurus].</td>
</tr>
<tr>
<td>XP_001364013</td>
<td>108 AAs</td>
</tr>
<tr>
<td>XP_001364013</td>
<td>FK506 binding protein [Bos taurus].</td>
</tr>
<tr>
<td>XP_001364013</td>
<td>108 AAs</td>
</tr>
<tr>
<td>XP_001364013</td>
<td>FK506 binding protein [Bos taurus].</td>
</tr>
<tr>
<td>XP_001364013</td>
<td>108 AAs</td>
</tr>
<tr>
<td>XP_001364013</td>
<td>FK506 binding protein [Bos taurus].</td>
</tr>
<tr>
<td>Accession</td>
<td>Length</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>NP_001187523</td>
<td>108AAs</td>
</tr>
<tr>
<td>XP_002091806</td>
<td>108AAs</td>
</tr>
<tr>
<td>AAL48728</td>
<td>166AAs</td>
</tr>
<tr>
<td>NP_957106</td>
<td>108AAs</td>
</tr>
<tr>
<td>ACO09931</td>
<td>108AAs</td>
</tr>
<tr>
<td>P0C1J3</td>
<td>108AAs</td>
</tr>
<tr>
<td>XP_002061513</td>
<td>108AAs</td>
</tr>
<tr>
<td>XP_001995325</td>
<td>108AAs</td>
</tr>
<tr>
<td>ADD19013</td>
<td>108AAs</td>
</tr>
<tr>
<td>BAH70698</td>
<td>108AAs</td>
</tr>
<tr>
<td>ACM08399</td>
<td>108AAs</td>
</tr>
<tr>
<td>XP_002058903</td>
<td>108AAs</td>
</tr>
<tr>
<td>NP_001083585</td>
<td>108AAs</td>
</tr>
<tr>
<td>XP_003138077</td>
<td>108AAs</td>
</tr>
<tr>
<td>NP_001154124</td>
<td>108AAs</td>
</tr>
<tr>
<td>XP_001960302</td>
<td>108AAs</td>
</tr>
<tr>
<td>Protein ID</td>
<td>Length (AAs)</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>AAF08341</td>
<td>108</td>
</tr>
<tr>
<td>XP_001247321</td>
<td>507</td>
</tr>
<tr>
<td>CAA88904</td>
<td>108</td>
</tr>
<tr>
<td>NP_989898</td>
<td>108</td>
</tr>
<tr>
<td>ADG29144</td>
<td>103</td>
</tr>
<tr>
<td>XP_587992</td>
<td>166</td>
</tr>
<tr>
<td>ACF49124</td>
<td>108</td>
</tr>
<tr>
<td>ACO13216</td>
<td>108</td>
</tr>
<tr>
<td>ACO08345</td>
<td>108</td>
</tr>
<tr>
<td>ACO10143</td>
<td>108</td>
</tr>
<tr>
<td>XP_001901266</td>
<td>108</td>
</tr>
<tr>
<td>ACO010143</td>
<td>108</td>
</tr>
<tr>
<td>ACF49124</td>
<td>108</td>
</tr>
<tr>
<td>ACO13216</td>
<td>108</td>
</tr>
<tr>
<td>XP_001901266</td>
<td>108</td>
</tr>
<tr>
<td>ACO010143</td>
<td>108</td>
</tr>
<tr>
<td>ACF49124</td>
<td>108</td>
</tr>
<tr>
<td>ACO13216</td>
<td>108</td>
</tr>
<tr>
<td>Accession</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>XP_100010</td>
<td>FKBP12-like</td>
</tr>
<tr>
<td>NP_001892</td>
<td>hypothetical protein LOC431968</td>
</tr>
<tr>
<td>XP_001372306</td>
<td>putative FK506 binding protein 1A</td>
</tr>
<tr>
<td>NP_001892</td>
<td>hypothetical protein LOC431968</td>
</tr>
<tr>
<td>NP_001892</td>
<td>hypothetical protein LOC431968</td>
</tr>
<tr>
<td>XP_001372306</td>
<td>putative FK506 binding protein 1A</td>
</tr>
<tr>
<td>NP_001892</td>
<td>hypothetical protein LOC431968</td>
</tr>
<tr>
<td>XP_001372306</td>
<td>putative FK506 binding protein 1A</td>
</tr>
<tr>
<td>NP_001892</td>
<td>hypothetical protein LOC431968</td>
</tr>
<tr>
<td>XP_001372306</td>
<td>putative FK506 binding protein 1A</td>
</tr>
</tbody>
</table>
> PREDICTED: peptidyl-prolyl cis-trans isomerase FKBP4 [Xenopus evskii].
> 108AAs | 3-108/Alg =106AA || pI 7.3 (7.3) || HI 23.6 (24.1) || Mass kDa 11.4 (11.6) |
> > FK506 binding protein [Saccoglossus kowalevskii].
> 108AAs | 3-108/Alg =106AA || pI 6.1 (6.1) || HI 23.6 (25.0) || Mass kDa 11.8 (12.0) |
> > FK506-binding protein 1A [Saccothrium dicrurum].
> 135AAs | 31-130/Alg =100AA || pI 5.2 (8.4) || HI 28.0 (31.9) || Mass kDa 11.1 (14.8) |
> > FK506-binding protein 2 [Culex quinquefasciatus].
> 111AAs | 3-111/Alg =109AA || pI 5.5 (5.5) || HI 30.3 (31.5) || Mass kDa 11.8 (12.0) |
> > predicted protein [Micromonas pusilla CCMP1545].
> 108AAs | 3-108/Alg =106AA || pI 9.4 (9.3) || HI 24.5 (25.9) || Mass kDa 11.7 (11.9) |
> > predicted protein [Saccoglossus kowalevskii].
> 108AAs | 3-108/Alg =106AA || pI 9.2 (9.1) || HI 23.6 (24.1) || Mass kDa 11.5 (11.7) |
> > predicted protein [Saccothrium dicrurum].
> 108/Alg =106AA || pI 8.7 (8.6) || HI 35.8 (37.0) || Mass kDa 11.4 (11.5) |
> > fk506-binding protein [Aedes aegypti].
> 108AAs | 3-108/Alg =106AA || pI 8.7 (8.6) || HI 35.8 (37.0) || Mass kDa 11.4 (11.5) |
> > FK506 binding protein 10 [Xenopus laevis].
> 108AAs | 3-108/Alg =106AA || pI 8.8 (8.8) || HI 34.0 (35.2) || Mass kDa 11.4 (11.6) |
> > PREDICTED: similar to FK506-binding protein-like protein [Nasonia nigra].
> 130/Alg =100AA || pI 5.2 (5.2) || HI 24.5 (27.0) || Mass kDa 11.7 (68.4) |
> > unknown [Populus trichocarpa].
> 108AAs | 3-108/Alg =106AA || pI 9.6 (9.5) || HI 25.5 (26.9) || Mass kDa 11.8 (11.9) |
> > FK506-binding protein 1A-like [Bos taurus].
> 134AAs | 27-134/Alg =108AA || pI 7.0 (9.9) || HI 39.8 (41.0) || Mass kDa 11.6 (14.6) |
> > macrolide-binding protein FKBP12 [Cryptococcus gattii WM276].
> 108AAs | 3-108/Alg =106AA || pI 5.7 (5.7) || HI 37.7 (38.0) || Mass kDa 11.3 (11.5) |
> > predicted protein [Micromonas sp. RCC299].
> 139AAs | 35-134/Alg =100AA || pI 5.2 (8.0) || HI 29.0 (35.3) || Mass kDa 11.0 (15.2) |
> > fk506-binding protein [Aedes aegypti].
<table>
<thead>
<tr>
<th>Accession</th>
<th>Length</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XP_001898911</td>
<td>137AAs</td>
<td>FK506 binding protein 4, isoform CRA_a [Mus musculus].</td>
</tr>
<tr>
<td>ACM09264</td>
<td>97AAs</td>
<td>FK506-binding protein 1B [Salmo salar].</td>
</tr>
<tr>
<td>XP_002321107</td>
<td>577AAs</td>
<td>Predicted: similar to OTTHUMP00000016671 isoform 2 [Pan troglodytes].</td>
</tr>
<tr>
<td>XP_569051</td>
<td>134AAs</td>
<td>Macrolide-binding protein FKBP12 [Cryptococcus neoformans var. neoformans].</td>
</tr>
<tr>
<td>XP_002901163</td>
<td>108AAs</td>
<td>Putative FK506 binding protein 1B [Oncorhynchus mykiss].</td>
</tr>
<tr>
<td>CAG00074</td>
<td>108AAs</td>
<td>Unnamed protein product [Tetraodon nigroviridis].</td>
</tr>
<tr>
<td>XP_002901163</td>
<td>108AAs</td>
<td>FKBP 12 [Camponotus floridanus].</td>
</tr>
<tr>
<td>XP_001898911</td>
<td>137AAs</td>
<td>FKBP 12 [Suberites domuncula].</td>
</tr>
<tr>
<td>XP_500249</td>
<td>144AAs</td>
<td>YALI0A19602p [Yarrowia lipolytica].</td>
</tr>
<tr>
<td>NP_001158524</td>
<td>97AAs</td>
<td>FK506-binding protein 1B [Oncorhynchus mykiss].</td>
</tr>
<tr>
<td>XP_002646203</td>
<td>108AAs</td>
<td>C. briggsae CBR-FKB-2 protein [Caenorhabditis briggsae].</td>
</tr>
<tr>
<td>EFN72364</td>
<td>111AAs</td>
<td>12 kDa FK506-binding protein [Camponotus floridanus].</td>
</tr>
<tr>
<td>ABG82004</td>
<td>109AAs</td>
<td>Putative FK506-binding protein [Diaporina citri].</td>
</tr>
<tr>
<td>XP_002911450</td>
<td>454AAs</td>
<td>Predicted: peptidyl-prolyl cis-trans isomerase FKBP4-like [Diaporina citri]</td>
</tr>
<tr>
<td>XP_518566</td>
<td>108AAs</td>
<td>Predicted: similar to OTTHUMP00000016671 isoform 2 [Pan troglodytes].</td>
</tr>
<tr>
<td>EFA82866</td>
<td>111AAs</td>
<td>FK506-binding protein-like protein [Polysphondylium pallidum].</td>
</tr>
<tr>
<td>EDK99886</td>
<td>455AAs</td>
<td>FK506 binding protein 4, isoform CRA_a [Mus musculus].</td>
</tr>
</tbody>
</table>
256 XP_002992143 593AAs | 38-144/Alg =107AA || pI 5.2 (5.3) || HI 29.0 (30.2) || Mass kDa 11.6 (65.9) || > hypothetical protein SELMODRAFT_134839 [Selaginella

257 ACY69949 109AAs | 3-108/Alg =106AA || pI 7.2 (7.1) || HI 33.0 (33.9) || Mass kDa 11.6 (11.9) || > FK506-binding protein 2 [Cimex lectularius].

258 NP_001052535 585AAs | 50-156/Alg =107AA || pI 5.0 (5.2) || HI 23.4 (25.1) || Mass kDa 11.8 (65.6) || > Os04g0352400 [Oryza sativa Japonica Group].

259 XP_002865651 570AAs | 46-152/Alg =107AA || pI 5.6 (5.0) || HI 25.2 (24.7) || Mass kDa 11.9 (64.2) || > hypothetical protein ARALYDRAFT_494919 [Arabidopsis lyrata subsp.

260 XP_534923 459AAs | 31-137/Alg =107AA || pI 5.2 (5.3) || HI 41.1 (25.5) || Mass kDa 11.8 (51.5) || > PREDICTED: similar to FK506-binding protein 4 (Peptidyl-prolyl

261 ABM55671 109AAs | 3-108/Alg =106AA || pI 8.2 (8.2) || HI 30.2 (32.1) || Mass kDa 11.5 (11.8) || > FK506-binding protein-like protein [Maconellicoccus hirsutus].

262 NP_001021722 108AAs | 3-108/Alg =106AA || pI 9.3 (9.2) || HI 31.1 (32.4) || Mass kDa 11.5 (11.6) || > FK506-Binding protein family member (fkb-2) [Caenorhabditis

263 XP_643718 107AAs | 3-107/Alg =105AA || pI 9.9 (9.9) || HI 40.0 (41.1) || Mass kDa 11.1 (11.2) || > FKBP-type peptidylprolyl cis-trans isomerase [Dictyostelium

264 AAD01594 137AAs | 33-132/Alg =100AA || pI 4.7 (4.7) || HI 33.0 (37.2) || Mass kDa 11.1 (15.3) || > FKBP-like protein - Dirofilaria immitis

265 ACO09466 448AAs | 28-134/Alg =107AA || pI 5.7 (5.1) || HI 43.0 (22.5) || Mass kDa 11.6 (50.1) || > FK506-binding protein 4 [Osmerus mordax].

266 NP_958877 449AAs | 26-132/Alg =107AA || pI 5.7 (4.9) || HI 47.7 (26.1) || Mass kDa 11.6 (50.5) || > FK506 binding protein 4 [Danio rerio].

267 AAD01595 137AAs | 33-132/Alg =100AA || pI 5.2 (5.8) || HI 26.0 (32.8) || Mass kDa 11.2 (15.3) || > FKBP-like protein - Brugia malayi

268 YP_001504616 108AAs | 1-108/Alg =108AA || pI 4.9 (4.9) || HI 38.0 (38.0) || Mass kDa 11.7 (11.7) || > peptidylprolyl isomerase [Frankia sp. EAN1pec].

269 XP_002535081 574AAs | 40-146/Alg =107AA || pI 4.7 (5.1) || HI 26.2 (28.6) || Mass kDa 11.7 (64.0) || > peptidylprolyl isomerase, putative [Lamprichthys communis].

270 O94746 108AAs | 1-108/Alg =108AA || pI 5.6 (5.6) || HI 39.8 (39.8) || Mass kDa 11.6 (11.6) || > RecName: Full=FK506-binding protein 1; Short=FKBP; AltName:

271 XP_002993334 569AAs | 54-160/Alg =107AA || pI 9.3 (7.5) || HI 34.6 (31.8) || Mass kDa 11.8 (63.2) || > hypothetical protein SELMODRAFT_449100 [Selaginella

272 NP_001151484 677AAs | 90-196/Alg =107AA || pI 4.6 (5.1) || HI 27.1 (29.7) || Mass kDa 11.7 (74.6) || > LOC100285117 [Zea mays].

273 DAA29159 459AAs | 31-137/Alg =107AA || pI 5.2 (5.2) || HI 44.9 (24.4) || Mass kDa 11.9 (51.6) ||
<table>
<thead>
<tr>
<th>Accession</th>
<th>Length</th>
<th>pI</th>
<th>MW(kD)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XP_001098079</td>
<td>459AAs</td>
<td>pI 5.6</td>
<td>11.8</td>
<td>Peptidyl-prolyl cis-trans isomerase FKB4 [Bos taurus].</td>
</tr>
<tr>
<td>BAE26413</td>
<td>108AAs</td>
<td>pI 8.7</td>
<td>11.9</td>
<td>Unnamed protein product [Mus musculus].</td>
</tr>
<tr>
<td>XP_001490817</td>
<td>560AAs</td>
<td>pI 6.1</td>
<td>11.8</td>
<td>Peptidyl-prolyl cis-trans isomerase FKB4 [Bos taurus].</td>
</tr>
<tr>
<td>CAC39452</td>
<td>453AAs</td>
<td>pI 5.2</td>
<td>11.8</td>
<td>Peptidyl-prolyl cis-trans isomerase FKB4 [Aspergillus oryzae RIB40].</td>
</tr>
<tr>
<td>XP_002191051</td>
<td>591AAs</td>
<td>pI 5.1</td>
<td>11.8</td>
<td>Peptidyl-prolyl cis-trans isomerase FKB4 [Aspergillus fumigatus Af293].</td>
</tr>
<tr>
<td>XP_001888723</td>
<td>109AAs</td>
<td>pI 5.7</td>
<td>11.8</td>
<td>Predicted protein [Laccaria bicolor S238N-H82].</td>
</tr>
<tr>
<td>XP_001029494</td>
<td>108AAs</td>
<td>pI 5.2</td>
<td>11.8</td>
<td>Peptidyl-prolyl cis-trans isomerase FKB4 [Bos taurus].</td>
</tr>
<tr>
<td>NP_058559</td>
<td>108AAs</td>
<td>pI 8.9</td>
<td>11.6</td>
<td>Predicted protein 1A [Aspergillus oryzae RIB40].</td>
</tr>
<tr>
<td>XP_001098079</td>
<td>459AAs</td>
<td>pI 5.6</td>
<td>11.8</td>
<td>Peptidyl-prolyl cis-trans isomerase FKB4 [Bos taurus].</td>
</tr>
<tr>
<td>NP_001075779</td>
<td>458AAs</td>
<td>pI 5.3</td>
<td>11.9</td>
<td>Peptidyl-prolyl cis-trans isomerase FKB4 [Oryctolagus cuniculus].</td>
</tr>
<tr>
<td>XP_00317050</td>
<td>137AAs</td>
<td>pI 5.2</td>
<td>11.2</td>
<td>FKB4-type peptidyl-prolyl isomerase [Loa loa].</td>
</tr>
<tr>
<td>XP_002375838</td>
<td>179AAs</td>
<td>pI 9.1</td>
<td>11.4</td>
<td>Peptidyl-prolyl isomerase FKB-type [Cyanobacterium sp. PCC 7420].</td>
</tr>
<tr>
<td>EFQ91528</td>
<td>184AAs</td>
<td>pI 7.1</td>
<td>10.9</td>
<td>Hypothetical protein PTT_11619 [Pyrenophora teres f. teres 0-1].</td>
</tr>
<tr>
<td>XP_001398555</td>
<td>128AAs</td>
<td>pI 9.9</td>
<td>11.6</td>
<td>FKB506-binding protein 1A [Aspergillus niger CBS 513.88].</td>
</tr>
<tr>
<td>NP_001133896</td>
<td>220AAs</td>
<td>pI 5.2</td>
<td>11.6</td>
<td>Peptidyl-prolyl cis-trans isomerase FKB4 [Salmo salar].</td>
</tr>
<tr>
<td>XP_451509</td>
<td>114AAs</td>
<td>pI 8.7</td>
<td>11.5</td>
<td>Hypothetical protein [Kluyveromyces lactis NRRL Y-1140].</td>
</tr>
<tr>
<td>Accession</td>
<td>Length</td>
<td>Mass</td>
<td>pI</td>
<td>pH</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>XP_001258359</td>
<td>112AAs</td>
<td>10.9 kDa</td>
<td>5.1</td>
<td>7.5</td>
</tr>
<tr>
<td>NP_073166</td>
<td>108AAs</td>
<td>11.6 kDa</td>
<td>5.1</td>
<td>7.5</td>
</tr>
<tr>
<td>YP_475015</td>
<td>151AAs</td>
<td>16.4 kDa</td>
<td>3.6</td>
<td>37.1</td>
</tr>
<tr>
<td>XP_001164426</td>
<td>142AAs</td>
<td>15.6 kDa</td>
<td>5.9</td>
<td>7.5</td>
</tr>
<tr>
<td>NP_001075614</td>
<td>108AAs</td>
<td>11.7 kDa</td>
<td>9.3</td>
<td>29.6</td>
</tr>
<tr>
<td>AAH71516</td>
<td>450AAs</td>
<td>12.0 kDa</td>
<td>7.0</td>
<td>25.6</td>
</tr>
<tr>
<td>NP_001818365</td>
<td>571AAs</td>
<td>11.9 kDa</td>
<td>9.7</td>
<td>36.7</td>
</tr>
<tr>
<td>EFW95408</td>
<td>109AAs</td>
<td>11.9 kDa</td>
<td>9.6</td>
<td>46.8</td>
</tr>
<tr>
<td>NP_199668</td>
<td>578AAs</td>
<td>65.2 kDa</td>
<td>5.6</td>
<td>24.2</td>
</tr>
<tr>
<td>XP_002263566</td>
<td>571AAs</td>
<td>66.1 kDa</td>
<td>4.6</td>
<td>23.1</td>
</tr>
<tr>
<td>BAE25814</td>
<td>140AAs</td>
<td>15.3 kDa</td>
<td>5.9</td>
<td>34.3</td>
</tr>
<tr>
<td>NP_0011141458</td>
<td>458AAs</td>
<td>51.5 kDa</td>
<td>5.2</td>
<td>24.9</td>
</tr>
<tr>
<td>CBH31849</td>
<td>112AAs</td>
<td>12.0 kDa</td>
<td>4.5</td>
<td>4.6</td>
</tr>
<tr>
<td>ACI49248</td>
<td>271AAs</td>
<td>30.0 kDa</td>
<td>6.3</td>
<td>37.6</td>
</tr>
<tr>
<td>AAH49596</td>
<td>108AAs</td>
<td>11.8 kDa</td>
<td>9.3</td>
<td>30.6</td>
</tr>
<tr>
<td>XP_001366229</td>
<td>462AAs</td>
<td>51.7 kDa</td>
<td>5.5</td>
<td>21.0</td>
</tr>
<tr>
<td>NP_001158699</td>
<td>137AAs</td>
<td>15.1 kDa</td>
<td>5.2</td>
<td>31.4</td>
</tr>
</tbody>
</table>
308 AA155100 138AAs | 34-133/Alg =100AA || pI 5.2 (9.5) || HI 28.0 (32.6) || Mass kDa 11.0 (15.2) ||>
Zgc:101826 protein [Danio rerio].

309 XP_001889498 108AAs | 1-108/Alg =108AA || pI 5.7 (5.7) || HI 39.8 (39.8) || Mass kDa 11.6 (11.6) ||>
predicted protein [Laccaria bicolor S238N-H82].

310 YP_721230 203AAs | 96-202/Alg =107AA || pI 7.5 (4.8) || HI 41.1 (47.3) || Mass kDa 11.4 (21.6) ||>
peptidylprolyl isomerase [Trichodesmium erythraeum IMS101].

311 XP_002491810 137AAs | 30-137/Alg =108AA || pI 5.7 (9.6) || HI 46.3 (41.6) || Mass kDa 11.8 (15.1) ||>
Pep tidyl-prolyl cis-trans isomerase (PIIase), binds to the drugs

312 ACI66312 137AAs | 33-132/Alg =100AA || pI 5.2 (9.5) || HI 32.0 (35.0) || Mass kDa 10.9 (15.0) ||>
FK506-binding protein 2 precursor [Salmo salar].

313 XP_002979133 569AAs | 25-131/Alg =107AA || pI 5.0 (7.6) || HI 38.3 (30.2) || Mass kDa 11.5 (63.2) ||>
hypothetical protein SELMODRAFT_110584 [Selaginella

314 XP_002988507 569AAs | 25-131/Alg =107AA || pI 5.0 (7.6) || HI 38.3 (30.2) || Mass kDa 11.6 (63.3) ||>
hypothetical protein SELMODRAFT_183937 [Selaginella

315 XP_001268267 112AAs | 1-108/Alg =108AA || pI 5.0 (7.1) || HI 31.5 (32.1) || Mass kDa 11.4 (11.8) ||>
FKBP-type peptidyl-prolyl isomerase, putative [Aspergillus clavatus

316 XP_002947775 617AAs | 61-168/Alg =108AA || pI 5.2 (4.7) || HI 30.6 (32.1) || Mass kDa 11.8 (66.8) ||>
hypothetical protein VOLCADRAFT_103560 [Volvox carteri f.

317 XP_001937259 129AAs | 21-120/Alg =100AA || pI 7.1 (6.4) || HI 24.0 (31.8) || Mass kDa 10.9 (14.0) ||>
FK506-binding protein 2 precursor [Pyrenophora tritici-repensis

318 XP_002541511 447AAs | 344-447/Alg =104AA || pI10.6 (4.3) || HI 32.7 (19.7) || Mass kDa 11.2 (48.9) ||>
hypothetical protein UREG_01027 [Uncinocarpus reesii 1704].

319 XP_001014237 134AAs | 26-133/Alg =108AA || pI 8.6 (9.8) || HI 36.1 (35.8) || Mass kDa 11.9 (14.9) ||>
FKBP12 binding protein [Tetrahymena thermophila].

320 ADY48621 137AAs | 33-132/Alg =100AA || pI 5.6 (8.9) || HI 23.0 (29.9) || Mass kDa 11.3 (15.5) ||>
Peptidyl-prolyl cis-trans isomerase FKBP2 [Ascaris suum].

321 NP_001079493 141AAs | 37-136/Alg =100AA || pI 6.1 (9.2) || HI 28.0 (32.6) || Mass kDa 11.0 (15.7) ||>
FK506 binding protein 2, 13KDa [Aspergillus luevis];

322 XP_001693615 108AAs | 1-107/Alg =107AA || pI 5.5 (6.1) || HI 33.6 (33.3) || Mass kDa 11.5 (11.7) ||>
peptidyl-prolyl cis-trans isomerase, FKBP-type [Chlamydomonas

323 ACI67147 137AAs | 33-132/Alg =100AA || pI 5.7 (9.7) || HI 28.0 (32.8) || Mass kDa 10.9 (15.0) ||>
FK506-binding protein 2 precursor [Salmo salar].

324 XP_002634440 430AAs | 13-120/Alg =108AA || pI 9.2 (5.8) || HI 26.9 (22.6) || Mass kDa 11.6 (48.1) ||>
C. briggsae CBR-FKB-6 protein [Caenorhabditis briggsae].

325 XP_001697315 143AAs | 34-141/Alg =108AA || pI 9.3 (9.9) || HI 23.1 (35.7) || Mass kDa 11.8 (15.5) ||
peptidyl-prolyl cis-trans isomerase, FKBP-type [Chlamydomonas]

<table>
<thead>
<tr>
<th>Accession</th>
<th>Length</th>
<th>pI</th>
<th>HI</th>
<th>Mass kDa</th>
</tr>
</thead>
<tbody>
<tr>
<td>XP_001791519</td>
<td>134AAs</td>
<td>4.6</td>
<td>37.3</td>
<td>10.9</td>
</tr>
<tr>
<td>EFX89578</td>
<td>138AAs</td>
<td>5.5</td>
<td>32.6</td>
<td>10.8</td>
</tr>
<tr>
<td>XP_001224999</td>
<td>116AAs</td>
<td>7.7</td>
<td>39.7</td>
<td>11.0</td>
</tr>
<tr>
<td>ABB85546</td>
<td>307AAs</td>
<td>7.5</td>
<td>31.6</td>
<td>11.1</td>
</tr>
<tr>
<td>CBB94802</td>
<td>134AAs</td>
<td>5.1</td>
<td>35.1</td>
<td>10.7</td>
</tr>
<tr>
<td>ABK24451</td>
<td>578AAs</td>
<td>4.8</td>
<td>23.7</td>
<td>11.7</td>
</tr>
<tr>
<td>XP_002680624</td>
<td>426AAs</td>
<td>5.6</td>
<td>25.6</td>
<td>12.1</td>
</tr>
<tr>
<td>YP_003889563</td>
<td>181AAs</td>
<td>9.5</td>
<td>41.4</td>
<td>11.4</td>
</tr>
<tr>
<td>NP_001085559</td>
<td>141AAs</td>
<td>6.1</td>
<td>32.6</td>
<td>11.0</td>
</tr>
<tr>
<td>XP_002807399</td>
<td>142AAs</td>
<td>5.5</td>
<td>38.0</td>
<td>10.9</td>
</tr>
<tr>
<td>XP_002913880</td>
<td>104AAs</td>
<td>10.1</td>
<td>27.9</td>
<td>11.4</td>
</tr>
<tr>
<td>ABO28322</td>
<td>138AAs</td>
<td>5.2</td>
<td>32.6</td>
<td>11.0</td>
</tr>
<tr>
<td>AAD01596</td>
<td>137AAs</td>
<td>5.0</td>
<td>35.8</td>
<td>11.3</td>
</tr>
<tr>
<td>XP_001268114</td>
<td>477AAs</td>
<td>10.5</td>
<td>24.5</td>
<td>11.1</td>
</tr>
<tr>
<td>XP_001215777</td>
<td>457AAs</td>
<td>10.5</td>
<td>23.9</td>
<td>11.1</td>
</tr>
<tr>
<td>CBJ26279</td>
<td>218AAs</td>
<td>9.7</td>
<td>41.7</td>
<td>12.1</td>
</tr>
<tr>
<td>CBI32825</td>
<td>398AAs</td>
<td>5.6</td>
<td>28.4</td>
<td>12.0</td>
</tr>
<tr>
<td>Accession</td>
<td>Peptide Length</td>
<td>Amino Acid Count</td>
<td>Percent Identity</td>
<td>Average HI</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>XP_001912496</td>
<td>466</td>
<td>104</td>
<td>4.3</td>
<td>24.5</td>
</tr>
<tr>
<td>363-466/Alg</td>
<td>104AA</td>
<td>6.1 (50.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP506</td>
<td>hypothetical protein [Podospora anserina S mat+].</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_001221106</td>
<td>471</td>
<td>104</td>
<td>4.3</td>
<td>25.3</td>
</tr>
<tr>
<td>368-471/Alg</td>
<td>104AA</td>
<td>6.1 (50.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP506</td>
<td>hypothetical protein CHGG_01885 [Chaetomium globosum CBS 148.51].</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_003105192</td>
<td>443</td>
<td>108</td>
<td>5.4</td>
<td>23.5</td>
</tr>
<tr>
<td>13-120/Alg</td>
<td>108AA</td>
<td>4.8 (40.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRE-FKB-6</td>
<td>protein [Caenorhabditis remanei].</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002453845</td>
<td>685</td>
<td>107</td>
<td>5.2</td>
<td>30.2</td>
</tr>
<tr>
<td>98-204/Alg</td>
<td>107AA</td>
<td>7.5 (75.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP506</td>
<td>hypothetical protein SORBIDRAFT_04g019590 [Sorghum bicolor].</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002948840</td>
<td>108</td>
<td>107</td>
<td>7.5</td>
<td>40.7</td>
</tr>
<tr>
<td>1-107/Alg</td>
<td>107AA</td>
<td>11.6 (11.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP506</td>
<td>hypothetical protein VOLCADRAFT_80367 [Volvox carteri f.].</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EET00236</td>
<td>109</td>
<td>107</td>
<td>9.7</td>
<td>33.9</td>
</tr>
<tr>
<td>3-109/Alg</td>
<td>107AA</td>
<td>11.6 (11.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FKBP</td>
<td>type peptidyl-prolyl cis-trans isomerase [Giardia intestinalis].</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAAK43162</td>
<td>103</td>
<td>95</td>
<td>9.1</td>
<td>35.9</td>
</tr>
<tr>
<td>9-103/Alg</td>
<td>95AA</td>
<td>11.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unnamed protein product [Aspergillus niger].</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBK23212</td>
<td>296</td>
<td>104</td>
<td>10.1</td>
<td>28.7</td>
</tr>
<tr>
<td>193-296/Alg</td>
<td>104AA</td>
<td>33.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unnamed protein product [Blastocystis hominis].</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_003058204</td>
<td>599</td>
<td>108</td>
<td>7.0</td>
<td>28.9</td>
</tr>
<tr>
<td>33-140/Alg</td>
<td>108AA</td>
<td>64.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fkbp-type peptidyl-prolyl cis-trans isomerase [Micromonas pusilla].</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_001769063</td>
<td>562</td>
<td>108</td>
<td>5.1</td>
<td>26.9</td>
</tr>
<tr>
<td>38-145/Alg</td>
<td>108AA</td>
<td>62.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>predicted protein [Phycomitrella patens subsp. patens].</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002301809</td>
<td>575</td>
<td>108</td>
<td>4.7</td>
<td>26.4</td>
</tr>
<tr>
<td>42-148/Alg</td>
<td>108AA</td>
<td>64.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>predicted protein [Populus trichocarpa].</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002385336</td>
<td>122</td>
<td>115</td>
<td>7.5</td>
<td>38.5</td>
</tr>
<tr>
<td>1-115/Alg</td>
<td>115AA</td>
<td>13.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FKBp-type peptidyl-prolyl isomerase, putative [Aspergillus flavus].</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_001033369</td>
<td>109</td>
<td>102</td>
<td>8.8</td>
<td>31.2</td>
</tr>
<tr>
<td>7-108/Alg</td>
<td>102AA</td>
<td>12.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peptidyl-prolyl cis-trans isomerase, FKBp-type family protein.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAP43506</td>
<td>108</td>
<td>107</td>
<td>5.1</td>
<td>43.5</td>
</tr>
<tr>
<td>1-108/Alg</td>
<td>107AA</td>
<td>11.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FK506-binding protein FKBp12 [Schizopyllum commune].</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEH11487</td>
<td>487</td>
<td>105</td>
<td>4.4</td>
<td>23.4</td>
</tr>
<tr>
<td>384-487/Alg</td>
<td>105AA</td>
<td>52.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FK506-binding protein 1A [Ajellomyces capsulatus G186AR].</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_765469</td>
<td>460</td>
<td>118</td>
<td>5.0</td>
<td>32.0</td>
</tr>
<tr>
<td>11-118/Alg</td>
<td>118AA</td>
<td>51.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peptidyl-prolyl cis-trans isomerase [Theileria parva strain].</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADD38788</td>
<td>149</td>
<td>101</td>
<td>6.1</td>
<td>32.9</td>
</tr>
<tr>
<td>43-143/Alg</td>
<td>101AA</td>
<td>16.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FK506-binding protein 2 [Lepeophtheirus salmonis].</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Length</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q4WMV5</td>
<td>489AAs</td>
<td>FKBP 373 YP_004180297 159AAs</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>XP_001516126</td>
<td>177AAs</td>
<td>peptidylprolyl isomerase, FBKP type [Arachnoideum marina]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_001830279</td>
<td>351AAs</td>
<td>peptidylprolyl isomerase [Coprinopsis cinerea okayama?#130]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_001644108</td>
<td>114AAs</td>
<td>hypothetical protein Kpol_50527 [Vanderwaltozyma polyspora DSM]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP_001046873</td>
<td>682AAs</td>
<td>Os02g0491400 [Oryza sativa Japonica Group]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_001107353</td>
<td>141AAs</td>
<td>FK506 binding protein 2, 13kDa [Xenopus (Silurana) tropicalis]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002336458</td>
<td>548AAs</td>
<td>predicted protein [Populus trichocarpa]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002559257</td>
<td>121AAs</td>
<td>Pci13g08320 [Penicillium chrysogenum Wisconsin 54-1255]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_001501489</td>
<td>136AAs</td>
<td>PREDICTED: similar to FK506-binding protein 1B [Equus caballus]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_001730131</td>
<td>91AAs</td>
<td>hypothetical protein MGL_2513 [Malassezia globosa CBS 7966]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_003636458</td>
<td>548AAs</td>
<td>predicted protein [Populus trichocarpa]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002185498</td>
<td>116AAs</td>
<td>predicted protein [Phaeodactyllum tricornutum CCAP 1055/1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0C1B0</td>
<td>478AAs</td>
<td>RecName: Full=FK506-binding protein 4; AltName:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_001825182</td>
<td>116AAs</td>
<td>FK506-binding protein 1B [Aspergillus oryzae R1B40]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_001853827</td>
<td>88AAs</td>
<td>1- 88/Alg = 88AA</td>
<td>pi 7.6 (7.6)</td>
<td>HI 29.5 (29.5)</td>
</tr>
<tr>
<td>Accession</td>
<td>Length (AAs)</td>
<td>Score</td>
<td>pI</td>
<td>HI</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>-------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>XP_003033116</td>
<td>108</td>
<td>5.1</td>
<td>43.5</td>
<td>11.6</td>
</tr>
<tr>
<td>CBJ32617</td>
<td>124</td>
<td>6.7</td>
<td>34.3</td>
<td>11.6</td>
</tr>
<tr>
<td>EPN72359</td>
<td>460</td>
<td>5.3</td>
<td>29.9</td>
<td>11.6</td>
</tr>
<tr>
<td>CBY33816</td>
<td>112</td>
<td>4.5</td>
<td>33.3</td>
<td>11.6</td>
</tr>
<tr>
<td>XP_002846777</td>
<td>478</td>
<td>10.5</td>
<td>28.8</td>
<td>11.2</td>
</tr>
<tr>
<td>XP_002199016</td>
<td>454</td>
<td>9.3</td>
<td>38.3</td>
<td>11.9</td>
</tr>
<tr>
<td>XP_002340819</td>
<td>540</td>
<td>11.5</td>
<td>11.5</td>
<td>11.5</td>
</tr>
<tr>
<td>XP_828079</td>
<td>425</td>
<td>9.2</td>
<td>28.7</td>
<td>11.7</td>
</tr>
<tr>
<td>XP_001445268</td>
<td>467</td>
<td>4.7</td>
<td>39.2</td>
<td>11.4</td>
</tr>
<tr>
<td>XP_736859</td>
<td>271</td>
<td>7.1</td>
<td>25.2</td>
<td>12.3</td>
</tr>
<tr>
<td>CCA14206</td>
<td>482</td>
<td>4.6</td>
<td>28.0</td>
<td>11.6</td>
</tr>
<tr>
<td>CBY10632</td>
<td>112</td>
<td>4.5</td>
<td>33.3</td>
<td>11.6</td>
</tr>
<tr>
<td>XP_003003573</td>
<td>461</td>
<td>10.4</td>
<td>26.9</td>
<td>11.2</td>
</tr>
<tr>
<td>YP_320852</td>
<td>165</td>
<td>5.7</td>
<td>40.2</td>
<td>11.5</td>
</tr>
<tr>
<td>XP_001420445</td>
<td>542</td>
<td>4.9</td>
<td>38.9</td>
<td>11.5</td>
</tr>
<tr>
<td>XP_448641</td>
<td>114</td>
<td>9.3</td>
<td>36.1</td>
<td>11.5</td>
</tr>
<tr>
<td>YP_001866308</td>
<td>163</td>
<td>9.1</td>
<td>37.4</td>
<td>11.3</td>
</tr>
</tbody>
</table>

PREDICTED: peptidyl-prolyl cis-trans isomerase FKBP1A-like

- **XP_003033116**: 1-108/Alg =108AA || pI 5.1 (5.1) || HI 43.5 (43.5) || Mass kDa 11.6 (11.6)
- **CBJ32617**: 18-122/Alg =105AA || pI 6.7 (5.3) || HI 34.3 (33.9) || Mass kDa 11.6 (13.4)
- **EPN72359**: 12-118/Alg =107AA || pI 5.3 (5.2) || HI 29.9 (22.4) || Mass kDa 11.6 (51.8)
- **CBY33816**: 2-109/Alg =108AA || pI 4.5 (4.7) || HI 33.3 (33.9) || Mass kDa 11.6 (12.1)
- **XP_002846777**: 375-478/Alg =104AA || pI 10.5 (4.2) || HI 28.8 (24.9) || Mass kDa 11.2 (52.0)
- **XP_002199016**: 31-137/Alg =107AA || pI 9.3 (6.0) || HI 38.3 (28.9) || Mass kDa 11.9 (50.6)
- **XP_002340819**: 377-480/Alg =104AA || pI 11.5 (4.3) || HI 31.7 (27.0) || Mass kDa 11.1 (59.0)
- **XP_828079**: 34-141/Alg =108AA || pI 9.2 (5.7) || HI 28.7 (22.6) || Mass kDa 11.7 (47.6)
- **XP_001445268**: 11-116/Alg =106AA || pI 4.7 (5.3) || HI 29.2 (20.6) || Mass kDa 11.4 (52.6)
- **XP_736859**: 16-126/Alg =111AA || pI 7.1 (5.2) || HI 25.2 (22.5) || Mass kDa 12.3 (31.0)
- **CCA14206**: 18-124/Alg =107AA || pI 4.6 (5.0) || HI 28.0 (26.6) || Mass kDa 11.6 (53.2)
- **CBY10632**: 2-109/Alg =108AA || pI 4.5 (4.7) || HI 33.3 (33.9) || Mass kDa 11.5 (12.0)
- **XP_003003573**: 358-461/Alg =104AA || pI 10.4 (4.2) || HI 26.9 (21.9) || Mass kDa 11.2 (50.3)
- **YP_320852**: 59-165/Alg =107AA || pI 5.7 (5.3) || HI 40.2 (39.4) || Mass kDa 11.5 (17.5)
- **XP_001420445**: 20-127/Alg =108AA || pI 4.9 (4.7) || HI 38.9 (28.2) || Mass kDa 11.5 (58.4)
- **XP_448641**: 7-114/Alg =108AA || pI 9.3 (7.1) || HI 36.1 (36.8) || Mass kDa 11.5 (12.2)
- **YP_001866308**: 57-163/Alg =107AA || pI 9.1 (7.2) || HI 37.4 (41.7) || Mass kDa 11.3 (16.9)

FK506-binding protein FKBP12 [Schizophyllum commune H4-8]

- **XP_002199016**: 454/Alg =108AA || pI 5.1 (5.1) || HI 43.5 (43.5) || Mass kDa 11.6 (11.6)
- **XP_002340819**: 540/Alg =104AA || pI 11.5 (4.3) || HI 31.7 (27.0) || Mass kDa 11.1 (59.0)
- **XP_828079**: 425/Alg =108AA || pI 9.2 (5.7) || HI 28.7 (22.6) || Mass kDa 11.7 (47.6)
- **XP_001445268**: 467/Alg =106AA || pI 4.7 (5.3) || HI 29.2 (20.6) || Mass kDa 11.4 (52.6)
- **XP_736859**: 271/Alg =111AA || pI 7.1 (5.2) || HI 25.2 (22.5) || Mass kDa 12.3 (31.0)
- **CCA14206**: 482/Alg =107AA || pI 4.6 (5.0) || HI 28.0 (26.6) || Mass kDa 11.6 (53.2)
- **CBY10632**: 112/Alg =107AA || pI 4.5 (4.7) || HI 33.3 (33.9) || Mass kDa 11.5 (12.0)
- **XP_003003573**: 461/Alg =104AA || pI 10.4 (4.2) || HI 26.9 (21.9) || Mass kDa 11.2 (50.3)
- **YP_320852**: 165/Alg =107AA || pI 5.7 (5.3) || HI 40.2 (39.4) || Mass kDa 11.5 (17.5)
- **XP_001420445**: 542/Alg =108AA || pI 4.9 (4.7) || HI 38.9 (28.2) || Mass kDa 11.5 (58.4)
- **XP_448641**: 114/Alg =108AA || pI 9.3 (7.1) || HI 36.1 (36.8) || Mass kDa 11.5 (12.2)
- **YP_001866308**: 163/Alg =107AA || pI 9.1 (7.2) || HI 37.4 (41.7) || Mass kDa 11.3 (16.9)
| Accession | Length | Identity | Pl
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>XP_003174591</td>
<td>477 AAs</td>
<td>105 (4.1)</td>
<td>28.8 (25.4)</td>
</tr>
<tr>
<td>XP_003121553</td>
<td>112 AAs</td>
<td>7.1 (8.6)</td>
<td>30.3 (31.3)</td>
</tr>
<tr>
<td>XP_395748</td>
<td>459 AAs</td>
<td>5.8 (5.3)</td>
<td>29.0 (23.7)</td>
</tr>
<tr>
<td>XP_001378550</td>
<td>459 AAs</td>
<td>9.4 (5.3)</td>
<td>37.4 (27.7)</td>
</tr>
<tr>
<td>XP_003049695</td>
<td>133 AAs</td>
<td>6.1 (5.6)</td>
<td>32.0 (47.4)</td>
</tr>
<tr>
<td>XP_001819030</td>
<td>470 AAs</td>
<td>10.0 (4.2)</td>
<td>43.3 (31.8)</td>
</tr>
<tr>
<td>XP_001189030</td>
<td>470 AAs</td>
<td>10.5 (4.3)</td>
<td>30.8 (23.4)</td>
</tr>
<tr>
<td>XP_002436973</td>
<td>592 AAs</td>
<td>7.2 (5.1)</td>
<td>23.4 (25.5)</td>
</tr>
<tr>
<td>XP_002929237</td>
<td>108 AAs</td>
<td>9.9 (9.8)</td>
<td>19.8 (21.3)</td>
</tr>
<tr>
<td>XP_003026571</td>
<td>111 AAs</td>
<td>9.1 (9.4)</td>
<td>42.6 (42.3)</td>
</tr>
<tr>
<td>XP_002407319</td>
<td>155 AAs</td>
<td>5.2 (7.8)</td>
<td>33.0 (38.7)</td>
</tr>
<tr>
<td>XP_001257974</td>
<td>479 AAs</td>
<td>10.5 (4.3)</td>
<td>32.7 (24.6)</td>
</tr>
<tr>
<td>XP_001374597</td>
<td>376 AAs</td>
<td>8.2 (8.0)</td>
<td>32.0 (33.8)</td>
</tr>
<tr>
<td>XP_002484538</td>
<td>159 AAs</td>
<td>9.9 (8.6)</td>
<td>43.9 (51.6)</td>
</tr>
</tbody>
</table>

Peptidyl-Prolyl Isomerase

- **FKBP (FK506 binding protein)**
- **PKP**
- **PDI**
- **CHIP**
- **HSP90**
- **HSP70**
- **HSP60**
- **DHFR**
- **MAF**
- **MCI**
- **MDM2**
- **p53**
- **p90**
- **p88**
- **p85**
- **p70**
- **p68**
- **p65**
- **p56**
- **p52**
- **p49**
- **p47**
- **p45**
- **p43**
- **p41**
- **p39**
- **p37**
- **p35**
- **p33**
- **p31**
- **p29**
- **p27**
- **p25**
- **p23**
- **p21**
- **p19**
- **p17**
- **p15**
- **p13**
- **p11**
- **p9**
- **p7**
- **p5**
- **p3**
- **p1**

Protein Properties

- **Identity (%)**
- **Pl**
- **Mass (kDa)**

Protein Functions

- **Protein folding**
- **Chaperone activity**
- **ATPase activity**
- **Nucleotide binding**
- **Molecular chaperone**
- **Heat shock protein**
- **Chaperone protein**
- **Chaperonin**
- **Heat shock protein 90 kDa**
- **Heat shock protein 70 kDa**
- **Heat shock protein 60 kDa**
- **Heat shock protein 40 kDa**
- **Heat shock protein 30 kDa**
- **Heat shock protein 25 kDa**
- **Heat shock protein 23 kDa**
- **Heat shock protein 21 kDa**
- **Heat shock protein 19 kDa**
- **Heat shock protein 17 kDa**
- **Heat shock protein 15 kDa**
- **Heat shock protein 13 kDa**
- **Heat shock protein 11 kDa**
- **Heat shock protein 9 kDa**
- **Heat shock protein 7 kDa**
- **Heat shock protein 5 kDa**
- **Heat shock protein 3 kDa**
- **Heat shock protein 1 kDa**

References

- [Arthrodema gypseum CBS 118893](#)
- [Cyanothece sp. PCC 7425](#)
- [Aspergillus oryzae RIB40](#)
- [Malassezia pachydermatis](#)
<table>
<thead>
<tr>
<th>Accession</th>
<th>Length</th>
<th>pI</th>
<th>MW</th>
<th>Protein Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>XP_001465122</td>
<td>348</td>
<td>8.2</td>
<td>47.8</td>
<td>Peptidylprolyl isomerase-like protein [Leishmania infantum JPCM5].</td>
</tr>
<tr>
<td>CBZ25827</td>
<td>348</td>
<td>6.3</td>
<td>47.8</td>
<td>Peptidylprolyl isomerase-like protein [Leishmania mexicana].</td>
</tr>
<tr>
<td>XP_002144678</td>
<td>348</td>
<td>10.5</td>
<td>52.0</td>
<td>FKBP-type peptidyl-prolyl isomerase, putative [Penicillium]</td>
</tr>
<tr>
<td>XP_002633263</td>
<td>201</td>
<td>5.7</td>
<td>41.3</td>
<td>C. briggsae CBR-FKB-1 protein [Caenorhabditis briggsae].</td>
</tr>
<tr>
<td>EEQ87614</td>
<td>385</td>
<td>4.9</td>
<td>22.2</td>
<td>FKBP-type peptidyl-prolyl isomerase [Ajellomyces dermatitidis].</td>
</tr>
<tr>
<td>XP_002144780</td>
<td>374</td>
<td>9.7</td>
<td>36.0</td>
<td>Peptidylprolyl isomerase-like protein [Leishmania braziliensis].</td>
</tr>
<tr>
<td>XP_001709141</td>
<td>109</td>
<td>9.7</td>
<td>11.9</td>
<td>FKBP-type peptidyl-prolyl cis-trans isomerase [Giardia lamblia ATCC].</td>
</tr>
<tr>
<td>XP_001564272</td>
<td>348</td>
<td>9.7</td>
<td>47.8</td>
<td>Peptidylprolyl isomerase-like protein [Leishmania braziliensis].</td>
</tr>
<tr>
<td>XP_001726731</td>
<td>150</td>
<td>4.9</td>
<td>47.8</td>
<td>Peptidyl-prolyl cis-trans isomerase [Escherichia coli ATCC 8739].</td>
</tr>
<tr>
<td>XP_004117385</td>
<td>206</td>
<td>4.9</td>
<td>12.2</td>
<td>FKBP-type peptidylprolyl isomerase [Pantoea sp. At-9b].</td>
</tr>
<tr>
<td>ABO26659</td>
<td>150</td>
<td>7.1</td>
<td>11.5</td>
<td>Peptidyl-prolyl cis-trans isomerase [Haliotis discus discus].</td>
</tr>
<tr>
<td>XP_003107896</td>
<td>150</td>
<td>8.2</td>
<td>15.4</td>
<td>CRE-FKB-1 protein [Caenorhabditis remanei].</td>
</tr>
<tr>
<td>CAD89783</td>
<td>156</td>
<td>4.5</td>
<td>16.8</td>
<td>Peptidyl-prolyl cis-trans isomerase [Oryza sativa (indica).</td>
</tr>
<tr>
<td>EF2585420</td>
<td>104</td>
<td>4.5</td>
<td>11.2</td>
<td>Peptidylprolyl isomerase PPL 01079 [Pandorina polymorpha].</td>
</tr>
<tr>
<td>XP_362031</td>
<td>485</td>
<td>10.5</td>
<td>52.3</td>
<td>hypothetical protein MGG_04476 [Magnaporthe oryzae 70-15].</td>
</tr>
<tr>
<td>XP_001400591</td>
<td>114</td>
<td>7.1</td>
<td>12.2</td>
<td>FK506-binding protein 1B [Aspergillus niger CBS 513.88].</td>
</tr>
<tr>
<td>NP_440378</td>
<td>201</td>
<td>5.7</td>
<td>21.6</td>
<td>FKBP-type peptidyl-prolyl cis-trans isomerase [Synechocystis sp.].</td>
</tr>
<tr>
<td>XP_002103335</td>
<td>348</td>
<td>10.3</td>
<td>38.4</td>
<td>Peptidylprolyl isomerase-like protein [Pandorina polymorpha].</td>
</tr>
<tr>
<td>Accession</td>
<td>Length (AAs)</td>
<td>pi</td>
<td>HI</td>
<td>Mass kDa</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-----</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>XP_002817917</td>
<td>322</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002923529</td>
<td>322</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_546928</td>
<td>327</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q91XW8</td>
<td>327</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002833103</td>
<td>229</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_001014235</td>
<td>109</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFX80389</td>
<td>133</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002714685</td>
<td>457</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_0011713397</td>
<td>244</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XP_002499962</td>
<td>577</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Length</td>
<td>Identity</td>
<td>pI</td>
<td>Hydrophobicity</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>----------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>NP_001099392</td>
<td>327AAs</td>
<td>36-143/Alg</td>
<td>57.7</td>
<td>45.4 (36.7)</td>
</tr>
<tr>
<td>XP_002722023</td>
<td>327AAs</td>
<td>36-143/Alg</td>
<td>57.4</td>
<td>56.1 (39.1)</td>
</tr>
<tr>
<td>XP_001379146</td>
<td>556AAs</td>
<td>41-148/Alg</td>
<td>6.2</td>
<td>46.3 (37.9)</td>
</tr>
<tr>
<td>XP_001519210</td>
<td>339AAs</td>
<td>49-156/Alg</td>
<td>5.9</td>
<td>50.0 (35.7)</td>
</tr>
<tr>
<td>NP_001399052</td>
<td>305AAs</td>
<td>19-126/Alg</td>
<td>8.1</td>
<td>47.2 (39.0)</td>
</tr>
<tr>
<td>NP_001085204</td>
<td>304AAs</td>
<td>18-125/Alg</td>
<td>8.4</td>
<td>49.1 (37.2)</td>
</tr>
<tr>
<td>NP_001122145</td>
<td>343AAs</td>
<td>42-149/Alg</td>
<td>6.4</td>
<td>38.0 (30.3)</td>
</tr>
<tr>
<td>AAH954673</td>
<td>327AAs</td>
<td>39-146/Alg</td>
<td>6.7</td>
<td>38.0 (31.2)</td>
</tr>
<tr>
<td>XP_002187983</td>
<td>329AAs</td>
<td>43-150/Alg</td>
<td>8.7</td>
<td>45.4 (34.3)</td>
</tr>
<tr>
<td>NP_001122145</td>
<td>343AAs</td>
<td>42-149/Alg</td>
<td>6.4</td>
<td>38.0 (30.3)</td>
</tr>
<tr>
<td>CAG01803</td>
<td>320AAs</td>
<td>39-146/Alg</td>
<td>6.4</td>
<td>41.7 (34.4)</td>
</tr>
<tr>
<td>XP_415708</td>
<td>264AAs</td>
<td>1-85/Alg</td>
<td>6.9</td>
<td>45.9 (36.7)</td>
</tr>
<tr>
<td>XP_002412109</td>
<td>178AAs</td>
<td>61-167/Alg</td>
<td>4.7</td>
<td>43.9 (36.0)</td>
</tr>
<tr>
<td>EFN71505</td>
<td>446AAs</td>
<td>97-204/Alg</td>
<td>5.0</td>
<td>41.7 (31.2)</td>
</tr>
<tr>
<td>EF629302</td>
<td>348AAs</td>
<td>1-105/Alg</td>
<td>8.4</td>
<td>48.6 (32.5)</td>
</tr>
<tr>
<td>EF219736</td>
<td>465AAs</td>
<td>17-124/Alg</td>
<td>5.2</td>
<td>36.1 (26.2)</td>
</tr>
<tr>
<td>XP_969147</td>
<td>384AAs</td>
<td>98-205/Alg</td>
<td>5.5</td>
<td>32.4 (30.5)</td>
</tr>
<tr>
<td>XP_002430548</td>
<td>375AAs</td>
<td>112-219/Alg</td>
<td>6.2</td>
<td>38.0 (28.8)</td>
</tr>
</tbody>
</table>

Note: FK506 stands for FK-506 immunosuppressant, which is a calcineurin inhibitor. The table lists various proteins and their lengths, identities, isoelectric points (pI), hydrophobicity indices (HI), and molecular weights (kDa). The proteins include FKBP6, hypothetical proteins, and putative proteins from various species.
<table>
<thead>
<tr>
<th>Accession</th>
<th>Description</th>
<th>Amino Acids</th>
<th>Pi</th>
<th>HI</th>
<th>Mass kDa</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE22811</td>
<td>peptidyl-prolyl isomerase, putative [Toxoplasma gondii GT1].</td>
<td>521</td>
<td>6.1</td>
<td>28.0</td>
<td>11.8</td>
</tr>
<tr>
<td>CAB57241</td>
<td>putative peptidyl-prolyl cis-trans isomerase [Entodinium caudatum].</td>
<td>113</td>
<td>6.1</td>
<td>28.0</td>
<td>11.8</td>
</tr>
<tr>
<td>XP_001654614</td>
<td>fk506-binding protein [Aedes aegypti].</td>
<td>398</td>
<td>4.7</td>
<td>31.2</td>
<td>11.7</td>
</tr>
<tr>
<td>XP_001147090</td>
<td>LOC100280699 [Zea mays].</td>
<td>186</td>
<td>4.5</td>
<td>31.2</td>
<td>11.7</td>
</tr>
<tr>
<td>AAI18470</td>
<td>Unknown (protein for IMAGE:8277068) [Bos taurus].</td>
<td>158</td>
<td>9.6</td>
<td>38.0</td>
<td>11.9</td>
</tr>
<tr>
<td>XP_002441215</td>
<td>hypothetical protein SORBIDRAFT_09g022450 [Sorghum bicolor].</td>
<td>186</td>
<td>4.5</td>
<td>38.0</td>
<td>11.9</td>
</tr>
<tr>
<td>XP_969074</td>
<td>PREDICTED: similar to shutdown CG4735-PA [Tribolium castaneum].</td>
<td>357</td>
<td>6.8</td>
<td>32.7</td>
<td>12.0</td>
</tr>
<tr>
<td>BAJ87990</td>
<td>predicted protein [Hordeum vulgare subsp. vulgare].</td>
<td>186</td>
<td>4.5</td>
<td>38.0</td>
<td>11.9</td>
</tr>
<tr>
<td>EPR29131</td>
<td>hypothetical protein AND_02169 [Anopheles darlingi].</td>
<td>413</td>
<td>6.9</td>
<td>34.9</td>
<td>11.7</td>
</tr>
<tr>
<td>XP_002283210</td>
<td>PREDICTED: hypothetical protein isoform 2 [Vitis vinifera].</td>
<td>188</td>
<td>4.6</td>
<td>37.8</td>
<td>11.8</td>
</tr>
<tr>
<td>XP_559833</td>
<td>ENSANGP00000025947 [Anopheles gambiae str. PEST].</td>
<td>396</td>
<td>6.9</td>
<td>34.9</td>
<td>11.8</td>
</tr>
<tr>
<td>AAR10205</td>
<td>unknown [Glycine max].</td>
<td>177</td>
<td>4.9</td>
<td>41.7</td>
<td>11.5</td>
</tr>
<tr>
<td>Accession</td>
<td>Description</td>
<td>Amino Acids</td>
<td>pI</td>
<td>MW (kDa)</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-------------</td>
<td>----</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>XP_002078821</td>
<td>predicted protein [Physcomitrella patens subsp.</td>
<td>13-120</td>
<td>4.9</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>GD23632</td>
<td>[Physcomitrella patens].</td>
<td>Alg =108AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACU20728</td>
<td>unknown [Glycine max].</td>
<td>11-121</td>
<td>4.7</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>CBY23605</td>
<td>unnamed protein product [Oikopleura dioica].</td>
<td>12-118</td>
<td>7.5</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>EPX28779</td>
<td>hypothetical protein [Daphnia pulex].</td>
<td>116-227</td>
<td>4.0</td>
<td>12.4</td>
<td></td>
</tr>
<tr>
<td>NP_191111</td>
<td>FKBP-type peptidyl-prolyl cis-trans isomerase,</td>
<td>11-121</td>
<td>4.6</td>
<td>12.1</td>
<td></td>
</tr>
<tr>
<td>BAJ95453</td>
<td>predicted protein [Hordeum vulgare subsp.</td>
<td>70-177</td>
<td>4.8</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>XP_002668164</td>
<td>predicted protein [Naegleria gruberi].</td>
<td>10-117</td>
<td>9.9</td>
<td>11.8</td>
<td></td>
</tr>
<tr>
<td>XP_002906896</td>
<td>peptidyl-prolyl cis-trans isomerase, putative</td>
<td>16-122</td>
<td>5.7</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>XP_001902831</td>
<td>FKBP-type peptidyl-prolyl cis-trans isomerase-59</td>
<td>15-122</td>
<td>6.1</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>XP_002674490</td>
<td>predicted protein [Naegleria gruberi].</td>
<td>51-161</td>
<td>7.4</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>ABK95439</td>
<td>unknown [Populus trichocarpa].</td>
<td>11-121</td>
<td>4.4</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>XP_002531576</td>
<td>fk506 binding protein, putative [Ricinus</td>
<td>11-121</td>
<td>4.4</td>
<td>11.8</td>
<td></td>
</tr>
<tr>
<td>ADY46470</td>
<td>Peptidyl-prolyl cis-trans isomerase FKBP4</td>
<td>14-122</td>
<td>7.0</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>XP_002876308</td>
<td>hypothetical protein [Arabidopsis lyrata subsp.</td>
<td>11-121</td>
<td>4.6</td>
<td>12.1</td>
<td></td>
</tr>
<tr>
<td>NP_9983114</td>
<td>FK506 binding protein 5 [Danio rerio].</td>
<td>31-138</td>
<td>8.7</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>AAD01597</td>
<td>peptidyl-prolyl cis-trans isomerase [Brugia</td>
<td>15-122</td>
<td>8.2</td>
<td>11.8</td>
<td></td>
</tr>
<tr>
<td>XP_001785239</td>
<td>predicted protein [Physcomitrella patens subsp.</td>
<td>11-121</td>
<td>4.9</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>predicted protein [Physcomitrella patens subsp. patens].</td>
<td>11-121</td>
<td>4.9</td>
<td>11.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Length</td>
<td>Start-End/Alg</td>
<td>pI</td>
<td>HI</td>
<td>mass (kDa)</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>---------------</td>
<td>----</td>
<td>----</td>
<td>------------</td>
</tr>
<tr>
<td>XP_003138850</td>
<td>165AAs</td>
<td>57-164/Alg = 108AA</td>
<td>5.6 (6.4)</td>
<td>24.1 (29.7)</td>
<td>11.7 (18.1)</td>
</tr>
<tr>
<td>EFX66021</td>
<td>476AAs</td>
<td>32-140/Alg = 109AA</td>
<td>9.2 (5.0)</td>
<td>32.1 (23.1)</td>
<td>11.8 (52.9)</td>
</tr>
</tbody>
</table>