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Supplement

The first part of the supplement contains a complete list of the options available for

the scripts used to segment and vectorize images and handle and analyze graphs

as well as additional usage examples. The second part gives a more in-detail and

technical description of the algorithms used by NET to vectorize images. In the

third part we detail how the validation of NET ’s results is performed.

S1 Processing scripts

Segmentation, vectorization, graph manipulation, validation and analysis are han-

dled by one script each, stored in the folders /binarize, /net, /gegui, /validation

and /analyze.

S1.1 Segmentation

For segmentation of images we use a combination of blurring, adaptive thresholding

and morphological operations on the binary image. The processing steps to generate

a binary image from a dataset using binarize adaptive.py images are:

• Gaussian blur to reduce small frequency noise.

• Creation of a binary image using adaptive thresholding.

• Removal of small foreground components.

• Binary opening and closing to smoothen the contours.

• Removal of small foreground components.

• Filling of small holes.

The script supports the following options to modify processing parameters:

-g Kernel size for the Gaussian blur applied to reduce noise in the image.

-s Kernel size for the binary opening and closing operations applied to smooth

the contours of the features.

-t Neighborhood size for the adaptive thresholding.

-c Constant specifying that every intensity value below the constant have to be

labeled as background.

-m Maximum size (in pixels) of features that will be removed during the cleanup

process.

-i Flag to invert image if foreground happens to be dark on a light background.

All images shown in this publication were segmented with this script, the parameters

used for the segmentation can be found in the file binarize adaptive-parameters.txt.
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The only exception to this is the bubbles1.png image as its segmentation involves

edge detection rather than foreground/background separation, therefore we sepa-

rated the segmentation process into a different script called binarize bubbles.py.

To segment for example the image cracks1.png, the user can run

python binarize adaptive.py

../data/originals/cracks1.png -g 3 -s 0 -t 71 -m 7000 -i

S1.2 The NET script

The complete source code is available at [2]. The main script used for extracting

network data is the net.py script which relies on the libraries net helpers.py

and C vectorize functions.so which provide helper functions and a cythonized

version of the computationally expensive processing steps respectively.

The script is run via the command-line. The only required argument is the path to

the binary image that will be processed. Optional arguments are:

-dest directory at which the results will be saved if different from source directory

(default dest = source directory).

-v Enables program verbosity (default v = False).

-d Enables debugging which will increase program verbosity even further and

create additional plots of the extracted contours, the triangulation and an

overlay of contour, triangulation and extracted graph (default d = False).

-plt Enables plotting of the extracted graph (default plt = False ).

-n Controls the size of the nodes displayed in the plot (default n = 4).

-fformat Specifies the format the plots will be saved in (default fformat = .pdf ).

-gformat Specifies the format the graph will be saved in (default gformat = .gpickle)

-dpi Specifies the resolution of the plots (default dpi = 500).

-p Length of surplus branches which will be cropped (default p = 5).

-r Level of redundant nodes preserved in the final graph (default r = 0). Choices

are:

2 all redundant nodes will be preserved

1 roughly half of the redundant nodes will be preserved

0 all redundant nodes will be removed
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-m If the binary image has not been cleaned up during the binarization process,

artifacts can be removed with this parameter. Every feature smaller than

minimum feature size (in pixels) will be discarded (default m = 3000).

-s If smoothing has not been performed in the binarization process, it can be

enabled with this parameter which also controls the kernel size of the mor-

phological operators applied (default s = 0).

Verbosity -v and Debug -d By default, the script will not produce any command

line text output to avoid spam. As processing times are sometimes long and it

can be helpful to know the current status of the script, running the script with -v

enables verbosity. In verbose mode the script will print a notification for each major

processing step to the command line as well as the time it took to complete this

step.

If something goes wrong and the output of the network extraction is not the

desired result, it may be helpful to enable the debug option. This will print even

more information about the state of the script to the command line. It will also save

snapshots of the processed image at major processing steps so the progress of the

processing can be evaluated. Saving images to the hard drive is a time-consuming

process therefore for normal network extraction we advise to keep debugging turned

off.

Plotting -plt, figure format -fformat and resolution -dpi By default, the script

will only create the data-file representing the network. If visualization is needed,

plotting can be enabled via -plt. This will create a plot of the network where

nodes are represented as dots and edges are represented as lines connecting the

dots. By default, the created plot will be saved as .pdf. A different format can be

chosen via the -fformat option. For large networks, plotting can take a very long

time, especially if the format is .pdf. If visualization is needed nevertheless, a way

to reduce plotting time is to save plots as .png or .jpg. The resolution of these plots

can be controlled by specifying the -dpi parameter.

Graph format -gformat and Distance Map -dm If the user intends to use the

extracted graphs in another program, we recommend saving graphs in a python-

independent format like .gml. The graph format can be changed by specifying
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the gformat parameter. A complete list of available formats can be found at net-

workx’s [3] documentation concerning reading and writing graphs.

If the user intends to display and manipulate graphs using GeGUI, a distance

map of the binary image will be needed. The distance map is needed during the

graph extraction process. To save it during a pass of NET, simply enable the dm

switch. To extract a graph from a binary image with r = 1, p = 2, plt = True,

gformat = gml, dm = True and v = True, the user can run

python net.py

/dir/subdir/binary image.png -r 1 -p 2 -plt -gformat gml -dm -v

This will create a network and prune away spurious branches shorter than two

nodes. It will save the graph as .gml retaining half of the redundant nodes needed

to support the geometry. Additionally it will create a visualization of the graph and

safe it as .pdf. The distance map created during the processing will be saved at the

location of the resulting graph. Because verbosity is enabled the script will notify

the user about its progress with command-line output.

S1.3 The GeGUI script

GeGUI combines manipulation of graph objects from networkx with matplotlib’s

plotting capabilities and provides point-and-click functionality for the creation and

removal of nodes and edges in the graph. Furthermore the GUI makes use of human

capabilities to segment images by superimposing the graph onto the original unpro-

cessed image of the network (not the binary version). This way, for each junction the

operator can see the original surroundings of the node in question and manipulate

the graph accordingly. For a newly created node, the script measures the radius of

the network in the original image at the position of the node and then assigns this

radius as weight. Newly created edges will have their weight set as an average of

the weights of the nodes they connect.

To further facilitate detection of spurious junctions we make use of the additional

information that Drosophila tracheoles do not form loops. Therefore every cycle

still present in the graph has to originate from at least one false junction. The GUI

provides a functionality to highlight all remaining cycles in the graph. The steps to

correct false junctions are:

• Mark the nodes which are part of a spurious junction by clicking on them.
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• Delete marked nodes (key press “d”).

• Mark each two nodes that are now disconnected but should be connected in

the genuine topology by clicking on them.

• Create an edge between the marked nodes by pressing “e”.

• Repeat until all spurious junctions are rewired.

All the source code is available at [2]. The main script used for graph ma-

nipulation is gegui.py. It relies on three sub-classes to handle user-interaction

(InterActor.py), manipulation of the underlying graph (graphHandler.py) and

plotting (PlotHandler.py).

The script is run via the command-line:

python gegui.py /resultfolder

As argument it needs the path to a directory in which the graph, the original image

and the distance map of the binary image are located:

/resultfolder

-- graph.gpickle

-- dm.png

-- original image.png

Once the script is called it will display a standard matplotlib [4] interactive plot

showing the graph superimposed onto the original microscopy image. The interac-

tive window supports zooming, taking a screenshot and moving the scope around.

We have several options to proceed by entering different keywords on the command-

line:

m Enables the “manipulation mode” which provides functionality for the ma-

nipulation of the graph explained below

x Exits the script.

h Shows a help-message explaining the options.

digraph Creates a directed graph from the existing graph. For this option to work,

exactly one node needs to be selected which will act as the root of the graph.

The command line is not directly needed if the user has entered the manipulation

mode. All further clicks and key presses will be performed with the plot in the

foreground. Possible actions when in manipulation mode are:
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click When clicking near a node it will be marked, when clicking near the same

node again it will be unmarked.

When shift-clicking on the plot a new node will be created at the position of

the click.

a Clears the current selection of nodes.

m Highlights all remaining cycles in the graph.

d Deletes all currently selecting nodes.

e Creates an edge between two selected nodes (will fail if not exactly two nodes

are selected).

z Undoes the last action.

The Analyze Script

Running the analyze script on a graph will create the text file network statistics.txt

in the directory of the graph. The statistics calculated and printed in the text file

are

• Number of junctions: Every node that has more than two neighbors qual-

ifies as junction.

• Number of endpoints: Every node that has only one neighbor qualifies as

endpoint.

• Length of the network: Sum over the lengths of all edges.

• Average edge length: Average length of edges in the network.

• Average edge radius: Average radius of edges in the network.

• Area of the network: Sum over the area occupied by all edges (edge length

times edge radius).

• Area of the convex hull: Area the convex hull of the network occupies.

• Number of cycles: Number of cycles (closed paths) the network contains.

To generate statistics from a graph, run

python analyze.py /dir/subdir/graph.gpickle

S2 NET technical details

The algorithms described in the following were all implemented in python. The

source-code as well as the fully functional processing script is available online at [2].

In the following we will describe the steps and algorithms that allow us to get from
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a pixel-representation of the network structure to a vector-based representation

without salient information loss.

S2.1 Contour Extraction

The first step is to extract the contours of the network or, more general, the fore-

ground. Each pixel that belongs to the contour is a foreground pixel which has

at least one background pixel in its 8-connected neighborhood. We extract the

contour using openCV’s [5] findContours-method which implements the algorithm

suggested in [6]. At this point we already perform a first step towards an abstract

representation of the network: we discard most of the points belonging to the con-

tour and approximate it by its dominant points. To achieve this we use the Teh-Chin

dominant point detection algorithm suggested in [7] which is already incorporated

in the contour finding function. This process is illustrated in Fig 1a. At this point

the internal network representation is a list of contours where each contour is a list

of coordinate-tuples representing the structure’s dominant contour points.

S2.2 Triangulation

Following the approach first suggested in [8] and then refined in [9] and [10], we

partition the foreground shape by performing a constrained Delaunay triangula-

tion [11]. We use the the segments between every two adjacent contour points as

constraints and therefore force them to appear in the triangulation. To execute

the triangulation, we utilize the meshpy [12] wrapper for python for the Triangle

library [13] originally written in C. This provides us with the ability to perform

triangulations of very complex shapes at C-speed.

To prepare the triangulation process, we first have to identify the outermost con-

tour. We can safely assume that this contour will be the longest and most complex

contour and therefore include the most points. We use the contour composed of the

most points and insert the other, smaller contours as holes into the largest contour.

Before the triangulation we distort the contour points by a small amount of noise

(≈ 10−1 [px]) to stabilize the triangulation algorithm. Triangulation algorithms

can fail if they encounter a degeneracy like collinear (i.e. points lie on the same

line) or coincidental points and these degenerate cases are not handled automat-

ically. If this can happen, we call the triangulation process numerically unstable.

NET uses the library Triangle [13] to perform the triangulation. As the contour
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points are extracted from a pixel representation which is therefore discretized, it

is quite possible that sets of collinear points exist. In practice, the triangulation

tends to fail for especially large networks. This is likely due to the fact that in a

large image the possibility for a degenerate case to appear is very high. Shifting the

positions of the points by a small amount makes it highly unlikely for two points

to be collinear. After performing the triangulation we again remove the noise by

rounding contour points to the nearest integer, so that it does not impact the result

of the triangulation.

As illustrated in Fig 1b we can now represent the network by a list of triangles

consisting of the coordinate tuples of their vertices. We further follow the approach

suggested in [9] and classify the triangles into junction, normal, end and isolated

triangles based on how many edges they share with the initial contour (i.e. inter-

nal edges as opposed to external edges). As we are only interested in the largest

connected component, we discard isolated triangles if there are any left.

S2.3 Skeleton Extraction

Several approaches for the stabilization of singular regions (i.e. branching points)

have been suggested [10], [14] to improve the quality of the skeleton. This is done to

ensure that the extracted skeleton conforms more to the human perception of the

“right” skeleton. Nevertheless in this work, we have developed our own approach

to find the best skeleton and improve upon the initial triangulation.

S2.4 Pruning

First we found that especially noisy contours lead to the creation of tiny surplus

branches along otherwise straight edges. A common pattern is an end triangle di-

rectly attached to a junction triangle or only separated from a junction triangle by

a very small number of normal triangles. To improve the outcome of the triangu-

lation, we therefore remove all these very small branches by cropping away all the

structures of the form end - normal - . . . - normal - junction where the number of

normal triangles in between most of the times is ≤ 5.
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S2.5 Finding the correct triangle center points

Every triangle will contribute one point (a “center” point) to the final skeleton but

finding that point for each triangle is not trivial. To improve the accuracy of the

approximation of the skeleton we differentiate between the three triangle species

when looking for the optimal center point. For end-triangles we simply use the

point opposing the single internal edge (i.e. the outermost point) so we do not

lose network length at the tips. For normal and junction triangles the process of

finding the center point is more involved. The definition of the skeleton is a one

pixel thin line which has the same (i.e. maximum) distance from the background.

We make use of this definition by creating an Euclidean distance map [15] of the

original binary image and then looking for local maxima in this distance map. The

distance to the nearest background pixel for each foreground pixel is calculated

using the algorithm proposed by [16]. For normal triangles we are looking for a

maximum in the distance map along the line bisecting the angle enclosed by the

two internal edges. For junction triangles we do the same but look along the longest

angle-bisection line.

Looking for the optimal center point in this way has the added benefit of already

providing us with the radius of the structure at each center point - we simply have

to note the value of the local maximum in the distance map we found.

S2.6 Conversion to a Graph

A graph can be defined by its adjacency matrix which states which nodes are con-

nected to which other nodes. To establish these neighborhood relationships, we first

have to create a preliminary triangle adjacency matrix. We do this by iterating over

all triangles and looking for edges shared between two triangles which will then be

noted as neighbors. Similar to a weighted adjacency matrix we also store the length

and radius of each edge as well as the coordinates of each node in the matrix. As

the networks processed this way can be extremely large (up to 106 nodes for leaf ve-

nation patterns) we use sparse matrices provided by the scipy-library [17] to store

the adjacency matrices. We now use the functionality provided by the networkx-

library [3] to convert this adjacency matrix into a graph-object.

At this point we can choose to either keep all the nodes we have extracted (Fig 1c)

or remove all nodes which are not necessary to depict the topological structure of
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the network (Fig 1d). Every node that originates from a normal triangle (i.e. has

exactly two neighbors) is a redundant node and only serves to better approximate

the geometry of the network.

It has to be mentioned that as we use a triangulation to partition the network, no

node in the resulting graph can have a degree > 3. For our purposes it does not mat-

ter whether the network at a certain point is represented by two neighboring nodes

with degree three or by a single node with degree four. If the degree of the nodes is

essential for the analysis one could easily implement a method that combines nodes

in close proximity to each other to a single node with a larger degree.

S3 Automated validation

For the automated validation we used the extracted and re-extracted graphs from

389 microscopy images of Drosophila tracheoles. The original binary images can be

found in the source folder validation/validation-graphs-tracheoles. First we

extract a graph from the original binary image using the net.py script (parameters

-p 2 -r 1) and use it as our known graph. The script create-validation-images.py

creates an artificial image using the known graph and plotting it on top of a noisy

background and saves it to the source folder. We then segment this artificial im-

age again using the binarize adaptive.py script (parameters -t 51 -g 3 -s 3 -m

35000 -c 80) and extract a graph from the segmented image (same parameters as

for the original). The script calculate-validation-statistics.py then calcu-

lates the number of nodes, length of the network, mean edge weight, ratio between

smallest and largest edge weight and pixel-wise difference between plots of the net-

works for the original and re-extracted network respectively and saves them to the

file validation-statistics.txt. The validation statistics calculated this way can

then be analyzed by running analyze-validation-statistics.py which will cal-

culate the deviation from the known graph for each re-extracted graph, save it to

the file deviations.txt, plot the distribution of deviations and output a summary

of the deviations to the command line. To reproduce the validation conducted in

this publication, the reader can run the script validation.sh which will perform all

the above-mentioned steps on the 390 validation images. Be aware that reproducing

the full validation will take a while.
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Figure 1: The skeleton extraction process. (a): Dominant points of the contour

extracted from the binary image. Structural details of the network are embedded

into the outermost contours as holes. (b): Constrained Delaunay triangulation of

the contour using the contour segments as constraints. End -, normal - and junction

triangles are indicated in red, purple and yellow. The detail shows the alteration of

the triangulation by removal of end-triangles directly adjacent to junction-triangles.

(c): Graph extracted from the triangulation. There is still a number of redundant

nodes originating from normal (purple) triangles left. (d): Symbolic representation

of the graph showing only its topology.


