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Supplementay methods

SM-1. Perturbation expansion of finite-time transition operator and pairwise alignment
probability : details

Here, we applyhetechnique of timalependent perturbation expansierg, [29,30]) to our
evolutionary model. We first rexpress our rate operator as:

@M= 1)+& (). --Eq(SM-1.1)
(It corresponds to Eq.(R4.1ere &P (t)! @, (t)+ @ (t) describes the mutatiefinee
evolution, and @ (t)! @, (t) + @ (t) describes the singimutation transition between
states. From the reduced formkxd.(R3.6), we get:

<s|(§')D(t) = I R2(st)(s|], --Eq(SM-1.2)

with RP(st)! R (st)+RY(st). --- Eq(SM-1.3)
(Eq.(SM1.2) and Eq.(SML.3) correspond to Eq.(R4.2) and Eq.(R4.3), respectivelging
the decompositiorEq(SM-1.1), theforward equation, Eq.(R3.19), can be rewritten a

!!—t..F""’D(t, ) # B0, 1) (1) = B0, 1) G (1) . - Eq(SM-1.4)
Now, let B°(tl, th) " T{exp(#!ﬂd-’ Qe ))} , and multiplyit from the right of each side of
Eq(SM-1.4). Then, exploiting the equation!,!_t"rﬁgD(t'; t =#@° ) B° (" 1), we get:
LiBeomeem) = o008 o). - ESMLS)

Integrating the both sides over tinté" [t, t!], using PP (t, t) = @P(t!, t1) = O, and replacing
t! with t!, we finally obtain a crucial integral equation:
Bo@ ) = Mot t)+ "' B, )P () BP( 1), - Eq(SM-1.6)

(It corresponds to Eq.(R4.45)milarly, starting from the backward equation, Eq.(R3.20), we
can obtain another crucial integral equation:

Bo@ ) = Bt t)+ " d BP@ )AP() B¢ ). - Eq(SM-1.7)

(It corresponds to Eq.(R4.5)These equations are egalent to the defining differential
equations, Egs.(R3.181), because the former were directly derived from the latter. (And the
latter can also be derived from the former.)
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Now, to formally solveEq(SM-1.6), we assume that the solution can be expanded
as P°(tt)=# "N=O PP (t, 1Y), where B0 (t, t!) is the collection of terms containingy

indel operators eacBubstituting this expansion inkx(SM-1.6) andcomparing the terms
with the same nundy of indel operatorsye find the equations:

o, t)=B0(t, 1), B2, (6 t)=""d/ 85t /) () BO(/, ). - Eqs(SM-1.8,9)

Using Eq(SM-1.8)as an initial condition, E¢SM-1.9) can be recursively solved to give:
o ty= "1 " dryodr 8o !1)T{# AL ./,.+1)} - EQ{(SM-1.10)
t<h e <<=t
for N! 1. Substituting this back intine above expansion, we finally get the formal
perturbation expansion of the finitene transitiom operator:
B0 =B+ 0 "l " diy dr, BP( DT{# AR L)
N=Lt</ < </ < =t
=8P, 1)+ " d! BP(L ) @R () BP(L 1)
M dnd! BR( L) QR BP(L L)AL R, 1)

t</ <t H<t!
M dr !, dE B L) G EPL L)E (L) BP( L, )G () BR (!, 1) +!
t<t <t <5<l
--- Eq(SM-1.11)
Notethat Eq(SM-1.11)can be derived also from E§M-1.7). Becaise of EQSM-1.2), the

equaton:
(s|B°(t, t!):exp(" #ar R'XD(S,!)) (s - Eq(SM-1.12)

always holds for every state! S' and any time pointgt, t)" [t,,t.]° (with t<t!). Thus,
IﬁgD(t, t!) describeshe state retentioduring the time iterval, [t, t!], with the retention
probability exponentiallydeceasingat the exit rate R° (s /)). Therefore, theN -th term in
the solution, §.(SM-1.11) literally describes the evolutionary processéhere the sequence
underwent exactlyN mutationslin his theorems 1 and Eeller [35] mathematically proved
that the conditional probability, Eq.(R3.17), obtained by substitutqn(E-1.11)for

PP (t, t!) is the soltion of the defining timadifferential equatiosof a cortinuoustime
Markov model (the probability versions Bfjs.(R3.1921)). In his paper presenting a widely
used method for stochastic simulatioBd|espie[34] in effect gave a more intuitive
derivaton of the solution. GillespieOs method is crucial for molecular evolutionists, because it
gives the basis of thgenuinemolecular evolution simulatofg.g., [26,27,28). Our
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derivation of the solutiorEq(SM-1.11) serves as a bridge betweEallerOmathematically
rigorous proof and GillespieOs intuitive derivation. Ours also helps understand the situation
underlying FellerOs theorems and givemauitively clearer view via the neat operator
representation of the solutiiNOTE: Besides, our derivein via perturbation expansion is
more flexible than theirs, because our method can go beyond the separation of exit rate terms
from transition terms (see.g., [31]).]

Now, examine the action &q(SM-1.11)(with (t, t!) replaced by(t,, t-)) on
every basic states, ! S'". To simplify the argument, we symbolically rewrite the action of

A°t)! @, (t)+@(t) ona bravector (s| as:

At = # r(M;st)(sM. --Eq(SM-1.13)

M PIL(s)]

Here, ! °[L]" {I\@, (X, l)}O#x#L,! {I\WD(XB, xE)}xB#XE’ denotes the set of insertion and
1# Xg#L, Wxe

deletion operators that can act on the sequence of leingdnd r(l\f"l"; st) denotes the

(generally time andbasicstatedependent) rate parameter of the irmjsrator M . Now,
operating each ternf &q.(SM-1.13)on (s, replacing (t,t!) by (t,t.), and applying
Eq(SM-1.12)and Eq(SM-1.13)alternately, we finally get

(|P°(, t) =ep{t " d! R2(s, 1)} (s)

+) ) Pﬂ[l\@l' |\@2’ T '\@N]! [t| 'tF])| (501 t])og/gso“@l I\@2! l\@N

N=1 [M2, M, M1 (P (N;sp)

--- Eq.(SM-1.14)
Here, ! '°(N;s,) denotes the space of all possible historied\bfindds eachthatbegin
with the segence states,. And

P.!.([ I\@r '@2’! , I\@N]’ [t ’tF])| O )g

1 N A\ " ) N ",+l " !
= 0% % d. d!N( (Vs g, ,)) exp & 96'd! RO(s. ")-
/=0

(s sl |70}

t=l o<1 </ < na=te

--- Eq(SM-1.15)
(, which caresponds to Eq.(R4.7)g the probability that an indel historj\®, M,,! , M, ]
occurred during the time intervdt,t.], given an initial sequence statg at time t,.
Egs(SM-1.14) suppgementedoy Eq.(SM-1.15)givesa considerably concrete expression of
the solution of the defining equations, Egs.(R319, of aur genuinestoctastic evolutionary
model. (See subsectionl3f[32] for a more detailed explanation off&SM-1.14,15))
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Now, let ! °(N=0;5)" {(s,[])} be the set consisting only of the history with zero indel,
[1, starting with the states,. We can interpretexp{! ":Fd! RC(S, !)} as tle conditional

probability of this zereindel history, P4([1,[t,,t:])| (s, t,)§ Thus,Eq(SM-1.14)canbe

rewritten more neatly as:

(2P t)=" ' PA([M, Moy ML Tt )] (S0t | M MR, MR,

N=0 [My, M, M ]%&'°(N; 5)
--- Eq(SM-1.140)
(It corresponds to Eq.(R4.6).)

Now, substitute an OancestralO sequence sf\a(tb,S“), for s, in Eq.(SM-1.14Q)
and take theniner product between it and the-kector, ‘SD>, of a OdescendantO sequence

state, s° (! S”). This procedure gives the finiteme transition probability,

<SA‘F§D(t, , tF)‘sD> = Pr'-(sD,tF)‘ (s*.t,)% asthesummation of probabilities over all possible

indel histories constent with the ancestral adéscendant sequence stafs exemplified

by Eqg.(R21), the comprison of s° with s* uniquely determines the pairwisequence
alignment (PWA) between them, with a definite homology stre¢é8]. Let ! (s*, s°)
derote (the homology structure ofuch a PWA. Thersummingthe above trasition

probabiity, (s*|P°(t,,t.)|s"), over all Oequivalent& Os providing’ (s*,s°) gives

P!.(! (s4,87), Ity te]) | (s ) which is the probabilityhat / (s* s°) resulted fromthe

evolution duringhe interval [t,, t.], given s* at t,. By analogy to the derivation of
Eq.(SM-1.14Q)we obtain the formal expression of this probabiisy

( L )
PAl ("), It D) [ M = L (L U USRS ) TGS
N= [N, N2, 1 My ]
Nt/ (s*5°)% ~ %&'PIN; 1 (5% )

--- Eq.(SM-1.16)

(It corresponds to Eq.(R4.8ere, ! "°iN; ! (s*, s*)§ denotes the set of all histories with



N indels each that can result ih(s*, ), and N4/ (s*, s)& is the minimum number of

indels requird for creatingthe PWA. Now, introduce the symbol that represents the set of all
global indel histories corsent with / (s*, s°):

oY (sh, )R 'N:Nmm[!( ooy ! PHN (S8 - EQ(SM-1.17)
Then,Eq(SM-1.16)canbe further simplified as:

GO NS ITCAD: S (U UN B LA HURS GRS -
i

--- Eq(SM-1.160)
(It corresponds to Eq.(R4.9EQ(SM-1.16)and Eq(SM-1.160%re the formal epressions of
the occurrence probability of PWA (s*, s°) derived purely from the defining equations,
Egs.(R3.1921), of our evolutionary model. Thus, they are thle iitio probabilityO of the
PWA. Insection SM2, we will examine its factability.

SM-2. Factorability of pairwise alignment probability : details
Here weexamine the factorability of thab initio probability of PWA ! (s*, s°),

Pr'-(! (s*,sP), [t,,tF])‘ (sh 1, )g in Eq.(R4.9) given the ancestral statg’() at the initial time

(t).

As mentioned irsectionR6 of Results and discussij@ach component probability,
P.!.([ N, N, N, [t,,tF])‘ (sht, )g given by Eq(R4.7), will not be factorable. This is

because its domain of multipteme integrations not a direct prodacThus, we will need to
combine the probabilities of a number of indel histories. How can we doAhisfentioned
in Section R5gach indel history[M,, M,,! | M, ], belongs to a LHS equivalence class

representece.g, by aLHS, {v'-l\ﬁ’[k,l], ooy MK, Nk]§k . which will be abbreviated as®
=1...,.K

hereafter. Let#l\!fl’gfh denote this LHS equivalence clas[M, M,,! , M, ] can yield
LHS

I (s*,s°), so can every elemeaf the LHS hat [M,, M,,! , M, ] belongs toThus,

= . 1
obviously, we have[l\ﬁ’] CH"® [a(sA, sD)] for every #l\ﬂi’;’4 containing arindel history
LHS LHS

that can yield a(s*, s°) . Nex, if the two indel histories comtt with each other through a

6



series of binary equivalence relations, Eqgs.(R%lRdhe two histories belong to the same
LHS equivalence class. Thesetfameanthat he set !' '°3/ (s*, s°)$ of al histories

consistent with! (s*, s®) can be decomposed into a dirsgm:

! ID;'! (s, SD)g% = # "f .—-- Eq(SM-2.1)
USEEET U

| n - . .
(It corresponds to Eq.(R6.5Here, ! '°3 (s*, s°)§ is the set of all LHSs consistent with

! (s", s°). This enables us to further rewrite the PWA probability(F4,9) as:

PH! (SNs), [t ) [N )E =/ P Tt te ] (sh t)& .
"ioly (A, D)g W%HS
- Eq(SM-2.2)
(It corresponds to Eq.(R6.6Here,
1 lg IR L , .\
Phbg, L[ e - ] PH{IM, M, -, LT, ) | %, 1)

[y, My, MR . Q@%HS
--- Eq(SM-2.3)

R N .
(, which corresponds to Eq.(R6.1ig)the Ototal prabilityO of #l\ﬂi’;’4 . Therefore, if

Eq.(SM-2.3)can be factorized for evgiLHS M1 ¥ °% (", s°)g, the PWA probability,

Eq.(SM-2.2), may also become factorable.
To examine the factorabyitof EQ(SM-2.3), it is convenient to consider the

guotients:
HP'!'([I\ﬁ)l' |\ﬁ)2,! ' I\ﬁ)N]i [tth])‘ (SA! tl )g
o ) ) . —Ed(sm-2.4)
% Ph(IM, Mt MT, Tt tT) | (8% 608/ PHD Tt )| (57 1)
n .!.(.'.lxﬁi[k,l], oo MK N T ,tF]) (s 1)
- Eq{(SM-2.5)

%P.!.(r'-l\@[k,l],..., N[k, Nk]g[tl,t] (s, t)$/P [1.1t,.t:]) \(s )% ’

and
Iy L * $ L * $
upf?w%s, [t, ,tF],+\ (s t, )08/‘0 - Pf%iﬂ\@%s, [t, ,tF]:J (S, )6&/ PAID [t t]) | (818
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--- Eq(SM-2.6)
and focus on the relationships betm EqQESM-2.4-6). (Eq.(SM-2.5) and Eq.(SM2.6)
correspond to Eq.(R6.3) and Eq.(R6.4), respectivélyig is becase Eq(SM-2.4), for
example, can be expressas

HP!'(['\@P '\ﬁzl TN AQN]! [tl’tF])‘ (SA, tl){%f

N 1, H
= Oh % d!l.ud!N(' Nlr(l\ﬁ’v;svg&,rv)) expl&( O'd! "RP(s. M 1) |,
V= + I ’

=, l
1= o<ty < <t <L gt =0 * k(s [=(5 M | =1..N]

, --- Eq.(SM-2.7)

where /RP(s 8, )" R2(s ")#R. (s, ") is an increment of the exit rat&.similar
expression applies also tgESM-2.5). Compared withEq(R4.7)(or Eq.(SM1.15)) the

merit of EQ(SM-2.7)is that it enables us todos on the regions of the sequence where the
indels took place, if the evolutionary modalshdesirable properties (revealed below). Thus,

for a LHS, M :{r'-l\ﬁ"[k,l], ooy MK, Nk]%k , we will set the following ansatz:
=1,...,K

L U SR ..
Hpﬁ%w%s, [0t (51008 = = Hor(PMIKT, . MG NI 1) 5% 05,

k=1
--- Eq(SM-2.8)
(, which corresponds to Eq.(R6.2andseek to find a set of conditions under which it indeed
holds.To get a hint on the conditions, we will look at the botlesidf EQCSM-2.8) more
closely. Using ESM-2.3)and Eq(SM-2.7), the left hand side of E§M-2.8) can be
rewritten as:

! * $ L )
up@w%s,[t.,tF],J(sﬁt.)&: MWL)

[, Mt - B

;;(1 :“:lr(l\@,;s,m, ’, )
#

= I d/,. d/ #
R ’ . !!--$ t =/ </I< <I/<l =, ' sz 30 ) /!”ﬂdl "RID Al 6
[,@1’,@2’! 'M’N]_M%,‘SI To</y NS NHTLE expg- . . . X (S/; S y - )7 A
# "=0

Co Co Co Co o €4

="
3 s |=(s V] 6
is 5ol g

--- Eq.(SM-2.9)
Meanwhile, the right hand side of E§M-2.8) canbe rewritten as:



%u,,..( MK, .o Mk NI 18 81) | (8% 1)

k=1

I Ny AL . 0\\#
) & & d! (k1) df (k,N,) (%i zlr(M[k,lk];sk.l,!(k,|k)))2
=/ (KO)! (k)< <! (k.N<! (kN1 X 2.
=0t 2
é)l (i) oD A 7 g
i (exp¥ )_0 &( d/ "R/(s,.S", ! )0 (s . 2
1 : AT g
- Eq(SM-2.10)

As we can see, H§M-2.9)and Eq(SM-2.10)are qute similar.Each termm either

expressions integration over N (:! :lek) time vaiables. And each history,
[N, M,,1 M, ], in Eq.(SM-2.9)is nothing other tinarearangement of the equivalents of
the events in the LHSM :{r'-l\ﬁ"[k,l], oy MK, Nk]% . Thereforejf the following two

k=1...,.K

equationshad, the ansatz &(SM-2.8), will also hold.
(A) The equationbetwesn the domains of integration:

ol d/,d/y ()

!
[Niy, Ny, ! N T gmf t=/o</1< <<yt
LHS

K # &
= * O I I I d/ (k,2): d’ (k, Nk)(()
ket B0t (k 0yt (KD)at <7 (KoNy)<! (KNt =t (

(B) Theequationbetween the integnds(i.e., the probability densities)

0p N

(" (s ) ,)exp&$# d/ "RP(s, s ! ))( e
i=1 g :’/gg\gg_f\m,i

(" (M idis e/ G6))

- 0
/ 2
= % M K, i +1 (
k:1;+eXI0& $ #((k 9 ) dt/R(s,. 8% 7)) |s \<SA\ %
/ v i =0 ¥ |y Oiiﬁ S{,l‘m [k, i %

(NOTE: Here, the equations were deliberately given in a rough manner, to aid the readerOs
intuitive understandingSupplementary appendix SAlin Additional file 2gives thé
mathematically rigorous forms.) Considering that a Lig&alence class contains all

possible locabrderconserving rearrangements of events in the representatiSeelgdation

(A) is intuitively very plausible. However, its mathematically rigorous proof is not so
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straightforward, and is givan Supplementarappendix SA2.2 in Additional file 2

Equation(B) might be intuitvely less plausible, because of the differenoe’ R (s s, *)

on both sidedNevertheless, we can prove that it also holds, provided that the following set of
conditions is atisfied.

Condition (i): The rate ofin indel event(M, ; s,,,, “,)) is independent of the portion of the
sequence states(, ) outside of the region of the local history the e\(eﬁ;) belongs to.
Condition (ii): The increment of the exit rate due to an indel eveRE(s, s, "), With

(s |:<s,[1|l\f4", ) is independent of the portion of the sequence s&ate putside of the region

of the local history the evei, ) belongs to.

See Supplementary appendix SA1 and SA2.3in Additional file 2for the derivation of the
mathematically rigorous version tifis set of conditions. (For illustration, Bupplementary
methods SM3, the factoability of theprobabilitywill be examined for the simplest concrete
LHS equivalence claggiven in Figue 5.)

Once the factorabilityEq(SM-2.8) (or Eq.(R6.2))is established for each LHS
equivalence class, i relatively easy to prove the factorability for théal quotient for the
PWA:

Bo(! (800 It )| (S 1) % PR (17Tt 1) | (% 1)/ PH(DL I, 1) | (87 1)

1y !

- 0 gl el
M. A Pha(sh, PV HS '

--- Eq(SM-2.11)

(which is equivalent t&q(R6.6)(or Eq.(SM2.2)). Thanks toEq(SM-2.8) (or Eq.(R6.2))

each summand on the rightmost side is already factorized. One caveat, however, is that the set

of localhistory-accommodating regions could vary depending on the LHS, even if the

resulting PWA is the same. This is because we are consi@diringel histories, including

non-parsimonious ones, that can yield the PWAs",s”). [NOTE: Some norparsimonious

indel histories contain local histories in between contiguous PASSs, such as

N, (%, 1), M), (x+1, x+1)§, which leave no traces of their own occurrences. They vary the set

of regions accommodating local histor]éale will choose the eximum possible set of
PASs in the given PWA, which separates the PWA timdinest potentially
localhistory-accommodating regionfNOTE: Such a maximum set does not necessarily
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consist ofall PASs in the PWA. An example is givensalsection R83.] Let y,,7,, o Ve
be such regions, where the number of regiahs, , is uniquely determined by the PWA and

the evolutionary mdel. Then, we can represent any

Y :{r'-l\@[k,l], ooy N[K, Nk]gk %&'"° b/ (s*, s°)§ as a vector with! ., componens:
=1,...,K

ax

@:(I\@[yl], L], I\ﬁ’[!.,max]). Here MI/.]=*Ni[k 1], .., N[k, N,J¢ if the Kk th local
history is confined irregion /., or I\;ﬁ"[!”] :[ ] (empty) if no events in the LHS occurred in

/. (FigureSl). Then, keepingup[([ ],[t,,tp])‘ (sA,tl)]=1 in mind, the factorability,

Eq.(R6.8), can be rexpressed as:

([16[] ,[t,,tF])
LHS

Now, consider the spacé "°3/ (s*, s*)§ itself. Any two different LHSs in this space differ

/. !
T (sA,r,>] = ﬂup[(M[!n],[t.,tF])\(s‘\t.)] .-~ Eq(SM-2.12)
=1

at leas by a local history in som /... Conversely, any given vector,

(I\ﬁ’[!l], I\ﬁ’[!z], I\ﬁ’[!.,max]), each of whose componerl@(!..]) Is consistent with the PWA

restricted in the regior/(), defines a LH3n ! °3/ (% s)§. Thus, the set! % (s*, s°)§

should be represented as a Odirect producf8y (s*, s°)$5 & ! °# . #(s", s°)§, where
I=1

4y s a(s*,s)§ denotes the set of local indel histories/in thatcan give rise tthe

subPWA of ! (s",s°) confined in /.. Using this structure of' ° 3/ (s*, s°)§ and

substitutingEq.(SM2.12)for each M ! * (s, s")g into Eq(SM-2.11) we finally get
the desired factorization of the PWA pability quotient
Bt(! (NI D) [ (N 0F = & Aed(%60h s #(h SOt D) | (1) -

1=

--- Eq.(SM-2.13)
Here the multiplication factor,
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Pyl A4S B (058, * #(MP[/ ot ])‘(S t)é/

ML) P (s, sD)a,
--- Eq(SM-2.14)
(, which corresponds to Eq.(R6.8¢presents the total contribution to the PWA probability
by all PWA-consstent local indel histories that can take place’in Finally, the definition of

the PWA probabilityquotient, Eq<SM-2.11), transforms E§SM-2.13)into the followingkey
equationfor the factorablab initio PWA probability

PA(f (s"8”). [t te]) | (% 1)
| | .~ EQ(SM-2.15)
=PI [t )| (5% 1 )E& IP.-.( 60h1,; #(s”, ) [tl,tF])\ (s 1)

(It corresponds to Eq.(R6.7).)

SM-3. Factorability of probability of simplest LHS equivalence class
To illustrae howthefactorzation Eq(R6.2) (or Eq.(SM2.8)), can besatisfied herewe will
examine the probabilityfaghe simplest concrete LHS equivalence class,

'{' M, (2, 4§ "\, (6, 3)§§HS (Figure 5). In thisexamplethetwo constituentndel histories

"M, (2, 4), M, (3 & and +M, (6, 3), M), (2, 4)§, sharethe ancestral state,
sh= [1 2,3 4,56, 7] , and the desceant state,s® = [], 56,809 A 7] . In addition, the

histories have their own intermediate statés|! <SA‘|\@D(2, 4) (: ([156,7] D and

sD|' < ‘I\FP (6, 3) ( <[J, 2,34,56,809 A7 D respectivelyFigure 5, panelsa andb).

Using Eq.(SM-2.7), the probabilityquotientof the first indé history is given by:
Ho (M (2. 4), M, (3 3Lt 1) | (1, 1)

!rD(2’4; SA!'Il) r.I (3’3’ Sa"lz) #
= ' d/d/, 172 41 wmlD A 1 upiD D A )
e ,(%exp{& d! "RP(s, 8% 1) &' Td! "R, s ,!)}g
$r(24sA )h@33s,/,) )
_ d!,d! . ---Eq(SM-3.1
t|<’ﬁt|: 2& { #.’z d, ”R)l(D(S ' a’!) # d, RID( )}% q( )

To get the rightostside, we used the identity RP (s°, s*, /) =
IR2(s%, s, /) + "R2(s,, % /). Similarly, the quotient of the second indel history is:
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Her([MP, (6, 3), (2 )], [t t:1) | (s, 1)

g. (635" /,)1(24s,/)

= # d/,dl 1 T )
e ge(t #d!URE(S, S\ )" # d!URES S\ )

# d/ d/ ?L.I(G’S;SA!'IZ)rD(214;SD"I1) ) E (SVISZ)
= : : . " W Lk " .- EQ. -o.
e, ge " RS, ) H A URYE, 5, D))

The total quotient of the subject LHS equivalence class is the summation of E@1(3M
We first notice thatmodulodifference of measure zertheunionof the two domainsf
integration is a direct product:

{(!1'!2)|t| <!1<!2<t|:}! {(!1’!2)|t| <!2<!1<t|:}

.—— Eq.(8M-3.3
= (0]t <Lt {1t <2, <t) HI-S3)

Thus,the total quotient can dactorized as:

Ho Mo (2. 201, [ (6, 3N, 11, ", 1)

I F 1 'F 17
o, A1 To(245 1) exp{( “d! "R, sA,!)}g

Iyt ' .
) %t| d!2rl(6,3sA’/2)exp{( lzd! R;(D(SD’SA’!)}g

Hp 'l'([ I\@D (21 4)]1 [tl ’tF]) ‘ (SA’ t| )g Hp 'I'([ I\ﬁ.)| (6’ 3)]1 [t| ’tF]) ‘ (SA’ t| )g

--- Eq.(SM-3.9)
provided that the following equations are satisfied:
,(24s,!)=r.(245s"1) , --- Eq.(SM-3.53)
n33s,/,)=r(63s/,) , --- EQ.(SM:3.5b)
IR2(s%, s,!)="R’(s, /) , --- Eq.(SM-3.5¢)
IR2(s%, s, /) ="R2(s, s /) . --- Eq.(SM3.5d)

Eq.(SM-3.5a) and Eq.(SMB.5b) correspond tocondition (i) insection Réf Resultsand
discussionAnd, owing to thealove definitions of s, and s, and to the equations

<sD ‘ =(s,|M, (3 3)=(s,|M, (2 4), we see thaEq.(SM3.5¢) and Eq.(SMB.5d) corresponcbt
condition (ii) insection R6EQ.(SM3.4) is a concrete instance of the factorability,(E§.2)
(or Eq.(SM2.8)), when M ={!.|\5'4'>D(2, 4% "M, (6, 3)§ . If you will, the factorability for more

complexLHS equivalence classes could also be demonstrated congcadttetyigh the

13



procedure becomes more cumbersome and lenigtlapny case, the proof can be generalized,
asis fully descrbed in Supplementary appendix SAin Additional file 2

SM-4. Factorability of multiple sequence alignment probability details

As in section R7 of Results and discussioerewe formally calculate thab initio

probability of a MSA given aootedphylogenetic tree, T = ({ N+, {b}T) , Where {n}; is the

set of all nodes of the tree, arf{db},; is the set of all branches of the tree. We decompose the

set of all nodes as{n}, =! ™(T)+! *(T), where ! ™(T) is the set of all internal nodes

and ! *(T)={n, .., n} isthe set of all external nod¢ghe N*! ‘ X(T)‘ is the number

of external nodesThe root node plays an important role and will be denoted™&%(T), or
simply n™*. Because the tree is rooted, each brabclis directed. Thus, lenh”(b) denote

the Oancestral nodeO on the upstream ebd and let n°(b) denote the Odescendant nodeO
on the downstream end df. Let s(n)! S" be a sequence state at theaa! {n}.

Especially, let s*(b) ! s(nA(b)) " §' denote a sequence statergt(b) and let
s°(b)! s(nD(b)) " §' denote a sequence staterdt(b) . Finally, as mentioned in
Backgroundwe suppose thahe branchengths,{|b| |b! {b};} ,and the indel model

parameters{! ,(b)}. " {! ,(b)| b# {b},}, are all gien.Notethatthe model parameters

' o(b) could vary depending on the branch, at least theoretically.
First, we extend thaleas proposedylj13,14,36]to each indel history along a tree,
by regarding the indel history along a branch as a map (or a transformation) from the ancestral
sequene stateto the descendant sequerstate as follows.An indd history along a tree
conssts of indel histories along all branches of the tree that are interdependent, in the sense
that the indel process of a branth determines a sequence s&itgh) at its descendant
node n°(b), on which the indel processes along downstream branches depehdus, an
indel history on a given root sequence staf® =s(n™*)! S' automatically determines

the sequence states at all nodgs(n)! S" for "'n! {n},} . Let 'P(g,)" " Z:O! °(N;s,)
(with ! '°(N;s,) defined belonEq(R4.6) be the set of all indel histories along a time axis

(or a branch¥tarting with states,. Then, each indel histor ,I\ﬁ’(b) , along treeT and
% T

14



Root

staring with s™ can be specificallgxpresseas:

{Ni(b) = "N, (b), ...,"N'é? N(b)(bl?g%él'f’ (sA(b))l and S(nRoot(T)) =™ e Eq (M
1<sD(b)\=<sA(b)\|\@1(b)! M i) for " bo%{b}, *

(It corresponds to Eq.(R7.1Here, the symbol,l\ﬁ", (b), denoteghe / th event in the indel
history alomy branch b! {b}.. The probability of the inddiistory, Eq(SM-4.1), can be

easily calculated. First, we already gavedbrditionalprobability of an indel history during
the time intervallt,, t-], by Eq(R4.7) Because we cecorrespond each branch! {b}; to

a time interval it(n* (b)), t(n°(b))& (with t(n°(b))! t(n*(b))=|b|), the probability of an

indel history, l\;ﬂ"?(b) =N (b), ..., M (D)5 & (sA(b)), along a branchb! {b}, is given
by:

P|(#®).8)| 5" ®). " ®)
" " . -—-Eq(SM-4.2)
- P[([Ml(b), N?N(b)(b)]' (0" 0, r(nD(b))])‘ (s" (), l‘(nA(b)))]

®ID (b)

(It corresponds to Eq.(R7.3Here we explicitly showed the brandependence of the model
parameters. Using H§&M-4.2) as a building block, the probability of the indel history along

T, {I\ﬁ’(b)} , specified § Eq.(SM4.1) (orEq.(R7.1), isgiven as:
T

|
| 1
P;g(l\@(b), b)‘ (SMb). OV e
~|(° (" O] (b) My o) (b)
for ' b' {b};

il g )
P*{ m)(b)}T ‘ (SRoot' nRoot)&?I | ({

RO

--- Eq(SM-4.3)
(It corresponds to Eq.(R7.2).)

In this way, we can calculate the probability of any indel hist{j@(b)} along tree
T

T starting with a given root atg s™! S'.
Now, an important fact is that an indel history, along a tree starting with a root
sequence state, uniquely yields a MSAs; s,,..., S x], among the sequences at the external

nodes, s, =s(n)ES” (n! " *(T)). [NOTE: Remember that the term OMSAgemeans

its homology structurgHowever, the converse is not true. That is, a given MSA,
alsy, s,..., s,x 1, could result from a large numbefraiternative inlel histories along a tree,

even when starting with a given sequence state at theMomover, there could be infinitely
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I L
many root statesonsistent with a given MSA. Here, lgs™*, { I\@(b)} g be a pair of a root
T7

state and an indel history alorij starting with the state. And le¥ '°#/ [s;,s,,...,S.]; T9

be the set of all such pairs defined @n consistent with/ [s,, s,,..., S x] - Then, as the
probability of a given PWA is expressedEs(R4.9)supplenented with EqR4.7), the
probability of a given MSA under a given model setting (includihyyshould be expressed
as:
Pl (s, S,... 5] | T#= / PH{(s™, nR°°‘)§P‘!,/{)I\b(b)} ‘ (s™, nR°°‘)g,
! T

'zs%‘,{nﬁ(b)}

|
- Loy

[slstv---,sN;:Tg
--- EqQ(SM-4.4)
which (, corresponding to Eq.(R7.%)s supplemented with EqSM-4.3) (or Eq.(R7.2)) Here,

Pr'.(sR"c’t, nR°°t)§ is the probability of states™ at the root noder(™). (It may be

interpreted as the prior in a Bayesian formalidirypu will, Eq(SM-4.4) supplemented with
Eq(SM-4.3) could be interpreted as the Operturbation expansiom@iiritio MSA
probability. To make this formal expansion formula more tractable, we consider the ancestral

sequence states at all internal nodes let {(n)}, . " {s(n)# S‘ n# | 'N(T)} denote a set

of such ancestral statésr, more precisely, its equivalence class in #rese oenchote(h)

(or 8)). To be consistent with a given MSA, the ancestral states must satisfy the Ophylogenetic
correctnessO condition in each MS#umn[37,38] [NOTE: The Ophypgenetic correctnessO
condition guarantees that the sites aligned in a MSA column sharielstancestry. The

condition could be rephrased as: Oif a site corresponding to the column is present at two
points in the phylogenetic tree, the site must aéspresent all along the shortest path

connecting the two pointd.@s long as the condition is fulfilled in all MSA columns,

however, any set of states must be allowed. SOZ[@t[sl,sz,...,sNX]; {n = N’N(T)}; T] be
the set of all{s(n)}, ., Os consistentith ! [s;S,-Sx] (and treeT). Then, the
aforementioned set!' "°¥ [s,,s,....,s,«]; T§, can be uniquely decomposed into the following

direct sum:
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‘i‘lD[a[spsz’-“’sNx];T]: U 1plD[Ot[sl’sp'“’s/v"];{S(n)}N'N;T] )
€ 2[(1[&1 5 ,...fli:)]};N{ZVEN’N ™} T]

- Eq(SM-4.5)
Here, W"[als,,s,,....s,1; {s(n)}; T] derotes the set of indel histories alorig

consistent with both the MSA (s, s,,...,S,x]) and the ancestral sequence stafs&f}, ., ).
Substitutingeq(SM-4.5)into Eq(SM-4.4), we have:
T¥= ( Pha[s,, s,..., Syl {s(m)}

{s(n)}on
&l [51,5,0, sNX];{n&%IN(T)};Tg

T .

P!'a[sl, Sopyuey SNX]

--- Eq(SM-4.6)
(It corresponds to Eq.(R7.5Here,
P [S) Syveees S 1 {S(N), w | Ty

ol
& 1 P:_(SROOt’ nROOt)ﬁ}g);:{ I\@(b)} ‘ (SRoot’ nRoot)g
%Sm’{'\!@(b)}TE T
107 15,8 xSy i TS,

--- Eq(SM-4.7)
is the probability of simultaneously getting[s, s,,..., sx] and {s(n)}! ~ - Thus, all terms in
Eqg.(SM-4.7)shae thesamehomology $sructureamongsequence states at all nodes.
Especially, the sequence states at interndésioave homology structures (with states at
other nodeslixed for respective nodeé&nd each history consists of indel histories along
branches consistent with éaother (asn Eq.(SM4.1) (orEq.(R7.1)). This, in conjunction
with the fact that the states at the internal sd@deingnodefixed homology structuresould

be used as Oanchors,Chtsry component oft °§ [s,s,,...,5,x];{s()}. w; T& could be

vertically decanposed into a direct product:

I PF [s,S,0e S {SM}. ;T ::+sR°°t, ( y g (sA(b),sD(b))‘gl. --- Eq.(SM-4.8)

b Yo}

T .

Here, s*(b) and s°(b) for each branclre proper elements in the sé{the equivalence

classes of);tates,{s}i:l b s}, w - (All pairs, %SROOt,{l\ﬁ)(b)} gés, share the root state.)
LY

Substitutingeq.(SM-4.3) and Eq(SM-4.8) into Eq(SM-4.7), and lumping together the terms
along each branch using Eg4.9) we finally get:
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P [S, Sy Sl {SI}, o | T

=Py, 0™ PY ('), (0), b)| (o), oy T EHSMA9)
(It corresponds tb:;??ﬁ).)Here,
P/ (5" (b),s° (b)), b) | (s (b), n*(b))§
%Pé( 1 ($*(b),s° (b)), ;It(nA(b)) t(nD(b))Q‘ (sA(b), t( " (b)))g( " --- Eq(SM-4.10)

(, which corresponds to Eq.(R7.7isthe probability of the ancestdescendant PWA along
branch b. This E0.(SM-4.9)is basically the expression propalka [13,14] and we
demonstatedin effectthat their proposal also holds even with a genuine stochastic
evolutionary model. Usually, EH§&M-4.6) supplemented with &(SM-4.9)is much more
tractable than E¢SM-4.4) supplemented with E(EM-4.3), because of the two reaso(ik)
Usually, it is not the indel history (along the tree) @the homology structure offieset of
ancestral sequence states that is inferred from a given MSA. (2) The probability of each indel
history along the tiee (Eq(SM-4.3)) is not factorable in geeral, whereas E(pM-4.9)is a
product of PWA probabilities, each of which should be factorable if the conditions (i) and (ii)
in section R@are satisfied.

Now, we seek to factorize tlad initio MSA probability into a form somewhat
similar to E.(R6.7)for theab initio PWA probability. In subsection 4.2 {82], we did so
using the histonbased expansion of the MSA probabilite( Eq.(SM-4.4) supplemented
with Eq(SM-4.3)). Here, we will use the anceststhtebased expansionég., EQ(SM-4.6)
suplemented with ESM-4.9)), as was only briefly sketched at the bottom of subsection 4.2
of [32]. In a MSA, gapless columns play almost the same role as PASs in a PWA. Because of
the aforementioned Ophylogenetic correctnessO condition, a gapless odiatesithat the
site in question existed all across the phylogenetic tree, and thus that no indel event hit or
pierce the site. Therefore, gapless columns will partition a MSA@gionseach of which

accommodates a local subset of every global hiskorglogously to the argument above
Eq.(SM-2.12) let C,C,,...,C, _ be the maximum possible set of such regions determined

by a given MSA ([s,, s,,.., Sx]) and a model setting (including tree). (As argued there,
all gapless columns are not necessarily needed to delimit the re@iea@nvhile if the
conditions (i) and (ii) irsection R@are satisfiedgach factor in the produat Eq(SM-4.9)
can be factorized as in ER6.7)
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P|(@(s"(B).5" (), b)| (s" (B, n" (B))]

= P[(11,0)| " @) n* OD] [ ] o | (A" [1,, s ats* ®).5”®D].b) | s* ) n* )]

--- Eq.(SM-4.11)
Here we used the notation that helps easily remind the dependence on the lbyanch (

Especially, {/. (b) denotes the maximum set of regions accommodating local
b (b)

Tp=Les F max

indel histories alongb consstent with the PWA, ! (s*(b),s" (b)) (Figure S2)Because the

set of gapless columns delimitingC, defines a subset of PASs ih(s"(b), s° (b))
! (=

!
..... max

delimiting 1y, (b) , each C, shouldenconpassat least one!. (b) (Figure S2).
Kp (b) : b

Kp=loeos, Kipax

Thus,Eq(SM-4.9) supplemented with E(GM-4.11)could be rearranged as:

P# [S) Sperss Sl { SN}, | TS5

[1] ( 1 n +(/| max n +.
= Pys™, nR°°t)§%; PH11. b)| (s"(b), nA(b»é%; . o (S0 S S {SM}, w3 G [ TH
b&{ b}t , )= )
--- Eq(SM-4.12)

Here, the OrawO muiltiplication factor contributed from the re@pnis given by:

L &[S, S,..., sy J; {s(M}. w; C, | Té&

! 0.-- Eq.(SM-4.13)
(+ - + A'lp%' ”’%b(b);#(SA(b),SD(b))gsb)\(SA(b),nA(b))-&i

b3{b}, / 1., (b)* Cy 2
To factorize the total probability of [s;, s,,..., S x|, Eq(SM-4.6) (or Eq.(R7.5))we need to

consider multiple sets of ancestral states. For this purpose, we introduce a OreferenceO r
sequence states,™ . It can be anything, as long as it is the state at the root consistent with

Root

als;, s,-- Sx] - Technically,one good candidate fos;™ would be a root state obtained by
applying the Dolb parsimony princile [39] to eah column of the MSA, because it is

arguably the most readily available state that satisfies the phylogenetic correctness condition
along the entire MSA. Given a referencg,” , each ancestral statg®(b) should differ

Root

from s only within some C, Os. Moreover, ¢hcondition (ii)in section R6yuarantees

that tre impacts of their differences within separaie Os on the exit rastould be

independent of each other. Thus, we have:
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RP(s(b), t)=R2 (s, t)+" ;"‘a‘/R'D(s (b), S, )[C, 1, -—-Eq.(SM-4.14)

where /R? (s (b), s§, t)[C, ] is the increment of the exit rate due to the difference

Root

between s*(b) and s within the region C, . Remembering that

PH([1, b) | (s*(b), n*(b))§= exp'zfng(_(:;(t;;)d! RP(s"(b), !):, the product in the middle of the

right hand side oEq(SM-4.12)can be rewritten as:
& P[], b)| (s*(b), n* ()&

b%{ b} ¢

_P"{[]}‘ Root Root)#&%exp_- * )

y b%{b};

n b § '
((b)) d[ " RID(S (b) Root I)[C( ]%
- Eq(SM-4.15)

Here, P.!.{[]}T‘(SE""t,nR"m)g: exp%ﬂ/( 5 &(_(:AD(S;;) d/ R2 (5™, !). is the probability that

the sequence underwent no ind&lacross the tee(T ), condtioned on that the state was
s at the rootThe remaining factor is the (prior) probability of the state atdbg

Pr'-(sR"Ot, nR°°‘)§. We will impose a third condition:
Condition iii):

Pf( Root Root)%_ ( Root Root)%& s !SRoot SJRoot Root C%% . Eq (SM -4. 16)

%=1

(It corresponds to Eq.(R7.8)ere themultiplication fador, ™, S, n™*; C, 8§,

represents the change in the state probability at the root due to the diftszemeen s™*

and s/ within C, . This equation hold®.g, when Pr'.(sR"c’t, nR°°t)§ is a geometric

distribution or a uniform distribution of the root sequence lengtfs™). [NOTE: HMMs
commonly usgeometric distributions of sequence lengths. The uniform distribution may be a

good approximation if we can assume that the ancestral sequence was sampled randomly
from a chromosome of letly L. . In this casethe distribution of the sequence length

L(s) (<<L.) would be proportional to(1! (L(s)! 1)/L.)" 1.] Using E(SM-4.15,16)
Eq(SM-4.12)can be rewtten as:
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PH [S, Syeees Sl {SI}, w0 | THo

" " ) a1 .
=PY B AL | (87 0™ & ¥ [0S s TS}, i %5 C | TH

--- Eq(SM-4.17)
Here, the OaugmentedO multiplicati@tofacontributed fromC, is defined as:

U oIS, S ST {SMV) w5 9% C, | TE
(! B8 S S (S} w5 C, | T& 1 (n™), 2, 0™ C, & - Eq(SM-4.18)
( ‘(“D(b)) 1 ID 7 A Root 1
) el - AL ¢ RSO, 7 0ICI3
b, {b}r
Substituting {.(SM-4.17)into EqQ(SM-4.6) (or Eq.(R7.5))we are just a step short of the
complete factorization. The final step is tiiEecompositio®of the space,

! &[sl,sz,...,sNx];{n " H# 'N(T)};T&, each of whose elesntsis aset of MSAconsistent

Root

ancestral states at all internal nodes. For this purp@sase s, once again, and define

I S [S:88li{n# $™ (M} T'( as the space afeviationsof MSA-consistent

Root

internal states froms,™ . As argued above, the deviations of ancestral states &fth
come only fromC, Os (with! =1...,! ), and deviations from differen€, Os behave
independently from each other (thanks to the delimiting gapless columns and conditions (i)

and (ii)). Thus, we get the diregroduct structure:
L& [0S S {n# $ 'N(T)};T'(

- . .- Eq(SM-4.19)
=% I g);§mt1,[§15211SNX]!{n#$IN(T)}’T(
) =1

Here, ! . £, ; 18,88 {n S %'N(T)};TS is the spacef deviations within C, .

Root

In Eq.(SM-4.17) all theabsolutedependences o,
I' . Thus, inEq(SM-4.6) (or Eq.(R7.5))the summation over

were factored out of the product over

L (510300005, 0 ;{n " #’N(T)}; 78 is reduced to the summation over

I, ?@OR"‘”; ! [si,sz,...,sNx];{n# $ 'N(T)};T'(. Exploiing Eq(SM-4.17)and Eq(SM-4.19),

Eqg(SM-4.6)can be reexpressed into the final factped form:
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Kmax ~
T)] [M,[alsi, $30r 8,015 5575 Cc | T] - - EQ(SM-4.20)

K=l

P[a[sl,sz,...,sNX]

T]= A5

(It corresponds to Eq.(R7.9Here,
RAS™ | TP, n™EP[1}, | (£, n™)§. — Eq(SM-42])

(, which corresponds to Eq.(R7.10%the probability of having a sequence staf¢” that
has beemntact all across tredl , and

) o8[S, S S 5 C |':'%
' - 'L # (s, sz,...,sNX];{qn)}(.N;§°°t;C.. | TE. --Eq(SM-4.22)

{stm) <™} wlc]
s T ss s I (VTR

is the multiplication factor contributeddm allMSA-consistentocal indel histories (along

I
T) confined in C, . [NOTE: ! Pgl [sl,sz,...,sNx];soR""t;C. |T°g given inEq(SM-4.22)

!' J 1 ' . .
should be equivalent to & %,/ [s,S,,.... 5,1 T(] T( given in Eq.(4.2.9¢cpf [32],
although the two expressionsyappear quite different at first glancén Eq(SM-4.22), we

let {s(n)! s}, ,[C,] denote the portioof the deviation of{s(n)}, ,, from §**

confined in C, .
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Supplementary figures (with legends)

a Globalindel history b Resulting MSA (inS') and local regions
(s | 1]21]8 6|7 8 -1
‘ 1 1213 -15|6(7 8 - -19
(s[=(s | (4,4) 2 1]218]-l5]6]|7 slalB|-|o
A4 .. 3 112 6|7 8|A[B]| -9
<%|:<Si|m' (7.2) 4 1|2 6|7|c|8|[A|B]|-|9
<%|:<SZ||\@D(3,4) 5 1] 2 6| 7|C|[8|A]|B E
F 112 -1-1]1-16]|7 8|A|B 9
¥ AN —r— A o —rvr T A
<S4|=<%||\@| (4’1) 1 2 3 4 5 6 7
4
(ss|=(s:|M (8D ¢ LHS(original representation):
(s 1=(sIMy (59 (= [ N

with . ) R R
M[1]= M;(4,4),M;(3,4) = My(4,4),M;(3,4) ,

M[2]= M, (7.1, M,(88) = M, (41), M,(55) ,
M[3]= M, (82), M (101) = M (7,2), ¥, (81) .

d LHS (vector representation):

N =ML 1, M. 090 ))

with . A -
M[ J=M[ ,1=M[ ,J=M[ ,I=[].

M[ ,1=M[1], M[ ;]=M[2], M[ ;]=MI[3].

Figure S1. OVectorO representation of example LHS along time interval.

a An example global indel history, consisting of six indel events and seven resulting sequence
states (including thimitial state s ). b The resulting MSA among the sequence states that the
indel history went througiThe boldface letters in the leftmost column indicate the sequence
states in the global history (par@! Thel-9,A-D in the cells a the ancestry indices of the

sites. The cells shaded in magenta and red represent the sites to be deleted. Those shaded in
cyan and blue represent the inserted sites. And those shaded in yellow represent the inserted
sites to be deleted. Below the MSAgthottom curly brackets indicate the regiohs

(! =356 in this examplejhat actually acommodate local indel historiesnA the yellow

wedges indicate the regions (/ =1,2,4,7 in this example) that can potentially

accommodate local indel histories, but that actually dolndhis example,K =3,
N,=N,=N,=2,and /. =7.cThe original representation diélocal history setl(HS).
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In each defining equation fohf’?[k] (k=123), the expression in the middle is the local

history represented by its action on the initial stat¢. (And on the righimost side is the
representation by éhactual indel events in the global bist (in panel), where the prime

indicates that each defining event is equivalent to but not necessarily equal to the
corresponding event in the global histailyThe vector representation of the LHS. Th®

denotes an empty local history, in which no indel eteok pla@. Thefigure wasadapted
from Figure 10 of32].
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a Globalindel history b Resulting MSA (inS') and local regions

R 112)3|4|5|-|-[6]7[8]9]A B|C
5 1({2|3 H -|E[6|7]8|9A B|C
6 1(2]|3p4]|5] - 6|7(89|AfD|BfC
1 11213 -|-|-|E|6|7[8]29 B|C
2 1({2|3|4]|5 . E|6]|7|8|9[A B|C
3 112|3|4|5|-|-|[6]7|[|8]9|A|D|B]|C
4 1({2|13(-|5|-|-]16|]7]8]9]|A B|C
AAAN —— A A AN — A A

M(bs)= M, (5) , G GG C, G C C G C, Cy,

M(b6)= M, (10,1) , .

Ni(bD) = N, (11.11), M, (45 ¢ LHSs along branches (vector representation):

M2 = MG R 123|455 -|6|7|8|9|Aa|lB]|C

ME3=[1], 5 1| 2|3|4|s|E|6|7]|8]|9|Aa]|B]|C

M(bd)= M,(4,4) . AN A A A — A A AN AN A AN A
1(b5) ,(b5) 4(b5) ,(b5) (b5)  6(D5) ;(b5) 5(D5) 4(b5) 14(b5) ;,(D5) 1, (05) 45(b5)

N (05) = (ML ,(05). ... ML (05)])= (00,000, (59 .00.0.0,0.0.0.0)-
5 1 2 3 E 6 7 8 9 A B C
1 1 2 3 - — E 6 7 8 9 - B C
— I_'_I
1(bD) ,(bD) 5(b2) +(b1) s(bl) 4(bl) ,(bD) (b1  o(bD) 4(b1) . (bI)

(o) = (ML, 0, ... o, (00) = (0,000 Mo (4.5) 0,000, Mo (22.2),0.1)-

Similarly,
'\W(bﬁ)=('\’4’ 1(06)], ..., N[ 13(b6)])=([],[],[],[],[],[],[],[],[],[], M, (10,7) ,[],[]),
M(b2) = (M ,(b2)], ..., M 14(b2)]) ([],[],[].[].[], l\ﬁ'.(ﬂl).[],[],[],[],[],[],[],[]),

M (b3)= (M’ 1(03)], ..., M[ 14(b3)]) @.0.0.0.0.0.0,0.0.0.0.0.0.0)
I\ﬁ’(b4)=(

(04, L, (04)]) =(0,0.0, M,(44),0.0,0,0.0,0,0.0.00).

d LHS along the tree (vector representation):

o), o} 1. o)
with
[I\@(b)}T[C 1={} for =12356,7910,
{Wb)]T[cA] {ML o(b5)= M, (51) , ML (0] = W (45) . WL o(b2)]= MR, (5D) , ML (b)) = Mip(4.4) },

[} c]={M .e0= 1,001 ML (o0)= M, @110},

T

Figure S2. MSA regions potentially able to accommodate local indel histories along tree.

a A global indel history alog a tree. Sequence IDs are assigned to the nodes. Each branch is
accompanied with an IDb{- b6) and its own gobal indel history. Th&®Q stands for the

root. b Resulting MSA of the Oextant@gsiences at external nodes and the ancestral
sequences at internal nod&ke boldace letters in the leftmost column are the node IDs.
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Below the MSA, the bottom curly brackets indicate regi@s (! =4,8 in this examfe)
that actually accommodate local indel histories along theArekthe yellow wedges
indicate the regionC, (! =12356,7,9,10 in this example) that can potentially
accommodate local indel histories along the tree, buttttatlly do notln this example,
I . =10.cLHSs along the branches (in the vector representation). As examples, the PWAs
along branchesl and b5 are also shown/|@ng with their own potentially
locakthistory-accommodating regiend LHS along the tree (vector representation). Only the
nonempty components were shown explicitly.

The figure follows basically the same notatiorFagire Sidoes.A cell in the MSA
is shaded only if it is inserted/@déd along an adjacentamch.Thefigure wasadaptedrom
Figure 11 of/32].
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a Regions oindelrate changes, and a moderate| history

——
[ — - — v —
o | L !
: — - >
| 11 -(2]-1{3 . 5 718 -19|A]|B
1 11-(2]-|3]-15 718 -19|A|B
2 1]1-12]-1|3 5 718|C|9]A|B
3 11 -(2]-1{3 5|1 -17]8]C|9|A|B
4 1|1 -(2]|D|3 5|1-17]8]C|9|A]|B
5 11E|2]|D|3 5(-]17|18]C|9|A]|B
F 11E|(2]|-|[3|-]|5|-]17]8]C|9|A]|B
| Y J | Y [\ Y ] ﬂ Y 'IA
1 2 3 4 5 6 7 8
b A history with a sticking-out deletion
2 e
[ i 1 i 2
[ — - - — e —
o | L '
: — >
I 11 -2 3 . 5 7181 -9
1 11 -2 3[-15 718 9
2 11 -2 3|1 -15 7181C |9
3 11 -2 3(-15-]7]18C]|]9
4 1]-12(|(D| 3 5|1 -17]8[C|?9
5 1|1E[2|D|3]|-|5|-]17|8]C]|?9
6 1lE|(2(D|3|-|5|-17]18]C]| 9| -
F 1| E| 2 3| -15|-178fC|9] -
1 Y J | Y J \ Y ] d Y ]
1 2 3 4 5 6
¢ A history with a bridging deletion
P N
9 : 1 : 2
[ — - — - e —
o : L '
— >

I 1(-12] - 5 9 -1A|B
1 1(-12] - 5 9 -1A|B
2 11-12 5 9[C|A|B
3 1(-12] - 5 - 9[C|A|B
4 1|1-12|D 5 - 9|1 C|A|B
5 1|E|2]|D 5 - 9[C|A|B
F 1(E| 2] - 5 - 9[C|A|B
Al T I T s I 'A
1 2 3 4 5 6

Figure S3. Example of the partially factorable indel modelEqgs.(R83.1,2)
a Regions confining indel rate changés.this panelall indels are either completely withim o
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outside of the region3.he graph above the MSA schematically indicates the indel rates of the
regions. Indel rate changes are confined in two regi@sand E,. Other than that, the

figure uses the same notatias inFigure S1Although the deletion of a site with ancestry 040
and the deletion of a site witlneesty O6@re separated byRAS (with ancestry O5@)ey are
lumped together to form a single local indel history, because they are both contaigedin
When a deletion sticks out of a region of changed indel.rakesdeletion of the two sites

(with ancestries OAO an@@ii:ks out of regionE, . In this case,/, is extended to

encompas this deletion, and esidp engulfing the old/, and /. All indel events within

this new /, definea single local indel histgr c When a deletion bridges two regions of
changed indel rateShe deletion of the three sites (with ancestries 06,0 OTiibadde38
regions E, and E,. In this case,E, and E,, as well as the spacer region between them,
are put ogether to form &®metaegonO(the new /, ). And the indel events withithe
metaregionare lumped tgether to form a single local indel histofjhefigure wasadapted

from Figure 12 0f32].
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Supplementarytable

Table S1. Mathenatical symbolscommonin this paper

[NOTE: The symbols are arranged in the following order:Jdipiabeat symbols-> Roman

alphabetic characters Greek alphabetic characters.]

Symbol

Description

First
occurrence

(or definition)

Non-alphabetic symbols

(x| (bra)

A bravector that represents the staxe (A

bra-vector is an extension of a revector in

Background;

Supplementary

the standard formulation.) appendix SAL
ly)  (ket) A ket-vector that OacceptsO the stite(A | Background:
ket-vector is an extension of a Supplementary
columnvector in the standard formulation.] appendix SAlL
® (hat) An operator that represerntse action of O. | Background;
(An operator is an extension of a matrix in| Supplementary
the standard formulation.) appendix SAL
X~Y (tilde) X is equivalent toY . In gereral

Beginning with Roman alphabeticcharacters

{b}; The set of all branches of the treE). Section R7, 2n(

paragraph

GGG The maximum possible set of regions eac| Section R7,
of which can accommodatedal indel above
histories consistent with the portion ofa | Eq.(R7.8)
given MSA confined in the region.

'P(s,) The set of all possible indel histories alond Section R7,
time axis (or a branch) that begin with the | above
sequence states, . Eq.(R7.1)

I °(N; s) The set of all possible histories d¥l Section R4,
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indels eaclalong a time axis (or a branch) | Eq.(R4.§
thatbegin with the sequence stats,.
ey (SA, SD)§ The set of all indel histories consistent witf Section R4,
the PWA, / (s*,s°). above
Eq.(R4.9)
! 'D;,gN;! (SA, SD)§/ The set of all indel histories witlN indels | Section R4,
each that can result in tRWA, ! (s*, s°). | Eq.(R4.8)
P The identity operator. Section R3,
Eq.(R3.18)
L(s) The length of a sequence in stase Section R3
m.)D (XB, XE) The deletiorof the subsequence between | Section R2,
(and including) the X -th and X -th sites. | Figure 3c
m.)l (X, I) The insertion of| sites between thex-th | Section R2,
and (X +1)-th sites. Figure 3b
I\ﬁ’, The ! -th event in an indel history. Section R4,
Eq.(R4.7)

| L An indel history consisting ofN indel Section R4,
WP =R, N MR events, I\@l, I\ﬁ‘z,! , I\f‘i')N : Egs.(R4.6,7)
I\ﬁ, (b) The !/ theventin an indel history along | Section R7,

the branch,b. Eq.(R7.1)

: An indel history along the brancH). Section R7,
M(b) Eq.(R7.1)
{l\:ﬁ’(b)} An indel history along the treeT . Section R7,

T Eq.(R7.1)
l\@[k,ik] The operator representing thg-th event in | Section R5,
the k-th local indel history isolated from a] Eq.(R5.4)
global indel history.

I\IFP _ A local history set (LHS) that corsss of K | Section R5

{r'-l\ﬁ"[k,l], - I\ﬁ’[k, Nk]g} local indel histories, which in isolation are:| (2nd-last
k=L...K | .. ) paragraph);
ANk, ..., MK N J§ with k=1,...K.. .
Section R6,
Eq.(R6.1)

i A local indel history that can yield the Section R6,

L] portion of a given PWA confined in the Eq.(R6.7)
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region, /. .

I\;P— t Section R6,
I\!@_ '\,@ '\,@ The vector representation of the LHE?(), above
/ / /,
( L1a], ML, oo ML max]) using the set of finest local regions, Eq.(R6.7)
1.1 /
TR YT P
,!#l\;?$ A locakhistory-set (HS) equivalence class| Section R6,
%«s L Eq.(R6.1)
represented byhe LHS, M (e.g,
[ .
_{ MK, 1], ..., MK, Nk]g}kzl..«)‘
The set of all positive integers. In general
i (={123..})
A D The minmum number of indels required fo| Section R4,
Nmin!'! (S !S )§
creatingthe PWA, ! (s*, s°). Eq.(R4.8)

1 ™NT) The set of all internal nodes of the trée)( | Section R7, 2ng
paragraph
X " X The number of external nodes of the tree | SectionR7, 2nd
N )

(T).

paragraph

I X(T) (={n1 an})

The set of all external nodes of the trde)(

Section R7, 2nd
paragraph

{n}, (=1 "M+ M)

The set of all nodes of the treé .

Section R7, 2nd

paragraph
n*(b) The Oancestral nodeO on the upstream el Section R7, &d
the branch ). paragraph
n°(b) The Odescendant nodeO on the downstre| Section R7, 2ng
end of the branchky). paragraph
neo The root node of a given tree. Section R7, 2nd
paragraph
PJ'(S, n)§ The probability that the sequence is in stal Section R7,
S atnode n of the tree Eq.(R7.4)
phX | Y§ The conditional pr.o.bability that we have th In general
outcome (X)) conditioned onY .
P;,(s',t')| (s,t)§ .Th-e conditional F)robability th.a.he sequenc¢ Section R3,
is in state gl at time t! conditioned on Eq.(R3.17)
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that it was in states attime t .

pl.([], [t, ’tF])| (s, )& The probability that the sequence hwén Section R4,
t initial state, S,, underwent no indel during | below
(zew{od 0 RO, D} .
Il the time interval,[t,,t]. Eq.(R4.7)
The probability that the sequence was in | Section R7,
POLS)ROO'[ | T§ P y q
state s;°” at the root and that it underwer| Eq.(R7.10)
no indels all across the tré#’).
B (1, t) The finitetime transition operatasf our Section R3,
indel evolutionary modefrom time t to Eq.(R3.17)
time t!.
B0 (¢l 1 .- Section R4,
o (thth ! T{exp(#é d/ @ ))} i.e, the
Eq.(R4.4),
operator describing the evolution fromi below
till t" with no indel. Eq.(SM1.4)
.. .. .. The total rate operator (at time) of our Section R3,
¢ m (= n+&w) | |
indel evolutionary model. Eq.(R3.11)
.. .. .. The mutatiorfree part of the total rate Section R4,
PO A +&RO) .
operator @°(t)). Eq.(R4.1),
Eq.(R4.2)
. " . The part of the total ratoperator @'D(t)) Section R4,
CHOICACRICAC) N | | N
describing the singteutation transition Eq.(R4.1)
between states.
. . . The component of the rate operatatrtime | Section R3,
SHGRI(CHORICHG) | _
t ) due to mutations of typem (— | or D). Eq.(R3.2)
CHO! The Omutation partO of the rate operator { Section R3,
describes the instantaneous transition (at | Eq.(R3.2),

time t) via mutations of type

Egs.(R3.1213)

m(=1or D).

() The Oexit rate partO of the rate operator t| Section R3,
attenuates the state retention probability v| Eq.(R3.2),
mutations of typem(=1 or D). Eq.(R3.6)

RO(st)! R(st)+RY(st) The total exit rate of the sequerstate ) | Section R4,
attime t due to indels. Eq.(R4.3)

RY(st) The component of the exit rate of the Section R3,
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sequence states() at time t due to

mutations 6type m(= | or D).

Egs.(R3.1415)

r(l\ﬁ’; st) The rate of the mutation represented M | Section R4,
on the sequence in state attime t. (In Eq.(R4.7);
general, the rate depdsons and t.) Eq.(SM1.13)

o (XB, Xe; S,t) The rate of deletion dhe subsequence Section R3

between (and including) the; -th and
Xg -th sites from the sequence (in statg)

attime t. (The rate generally depends on

(near the top)

s and t.)

f (X,|; S,t) The rate of insertion ofl  sites between the Section R3
X-th and (x+1)-th sites of the sequence (i| (near the top),
state s) attime t. (The rate generally Eq.(R3.16)
depends ons and t.)

g (! o) *ow L) The space of all basic sequence states. | Section R2

L=0

S(= j = [-’1,-’2,--- ' L]) A basic sequence state (of length), in Section R2,
which each site X) is assigned an ancestry Figure 2c
(!,) alone.

§= An extended sequence state (of lendth, Section R2,

[(-’ v ) (o ") (! L)] in which each siteX) is assigned an Figure 2b

ancestry () and a residue/(, ).

s (! ')

The sequence state at the nodé {n},.

Section R7, 2nd
paragraph

o) (! s(n"())

The sequence state at the Oancestral nod

on the upstam enaf branch b.

Section R7, 2nd
paragraph

() (! s(n°(0))

The sequence state at the Odescendant n

on the downstream enof branch b.

Section R7, 2nd
paragraph

s™ =g(n™) The sequece state at the root node. Section R7, 3rd
paragraph

A A OreferenceO root state. Section R7,
above
Eq.(R7.8)

{S(n)}! N A set of ancestral states at all internal nod| Section R7,
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above

Eq.(R7.5)

T(=({n}. {b}))

A (rooted) phylogenetic tree.

Section R7, 2nd

paragraph
T{} The (summation of) timerdered product(s)| Section R3,
It rearranges the operatarseach produdh | Eq.(R3.18);
the temporal order so that the earliest Eq.(SA1.11)
operator comes leftmost.
| X(a) The union of the sets (spaces¥,(a) Os, In general
ToAA which form a function on a space (se#\,
over all elementsgOs) inA.
Beginning with Greek alphabeticcharacters
1 (sh, ) A PWA between the ancestral sequence | Section R4,
(s") and the descendant sequens@( above
Eq.(R4.8)
I'[s, S5 SNX] A MSA among the sequence at #ndernal | Section R7,
nodes, 5 =s(n)! S' (n! " *(T)). above
Eq.(R7.4)
TR P The finest regions each of which can Section R6,
potentially accommodate local indel above
histories comsistent with a given PWA. Eq.(R6.7)
IRP(s s t)" The difference of the exit rate of state Section RS,
RO(st)#RP (s, t) from that of states! at time t . condition (ii);
Eq.(SM2.7)
N (o)) The model parametefsr the indel Section R7, 2n(
processes along the bcm b. paragraph
D e The maximum possible number of the Section R7,
potentially localhistoryaccommodating above
regions consistent with a given MSA. Eq.(R78)
! e The number of the finest potentially Section R6,
locakhistory-accommodating regions above
consistent with a given PWA. Eq.(R6.7)
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! 'D;;’ (SA, SD)§; The set of all local history sets (LHSs) Section R6,
consistent with a PWA/((s*, s°)). Eq.(R6.5)

A'D[!,.;#(SA, SD)] The set of local indel histo;iesDthat caT\ giv| Section R6,
rise to the stlPWA of / (s”,s”) confined| Eq.(R6.7)
in /..

W H [Su S SNx]; 8 The multiplicaion factor contributed from | Section R7,

! P;{%)Root; . | - all local indel histories along the tre@ | Eq.(R7.9),
each of which can yield the portion of a below
MSA (! [S, S, SNX]) confined in the Eq.(R7.10)
region, C, .

/JP;}-SROOt! SORom, s c § The (m.u.ltiplicative)char;?e in the state Section R7,
probability at the roofn™") due to the Eq.(R7.8)
difference bateen the statess™ and
S, within the region, C, .

— The probabilityquotient (multiplication Section R6,
i’)a!#m[k’l]’ i T R g factor) from the local indel history Eq.(R6.2),

He##... &lt, e, |(s7, 1)8

AaoNgS, A 8 | Mk, NIk NE Ea.(R6.3)
" !..$ * $ The total probability quotient (multiplicatiof Section R6,
upﬁ%#l\@%s’ [t ’tF]ll-‘ (SA’ b )g factor) from the LHS equivalence class, Eq.(R6.2),
| L% Eq.(R6.4)
My
n F(a) The product of the values of a functjon In general
al A F(a), over all elementsgOs) in the space
(set) A.
. F(a) The summation othe values o& function In general
al A F(a), over all elementsgOs) in the space
(set) A.
¥ (8. SrS i The set of aII{S(n)}! ~ @ (.e, all sets of Section R7,

! ac)n - 'N(T)} ; Tz sequence states at internal ngdbat are above
consistent with the MSA/ [Sl,sz,...,sNX] . | Eq.(R7.5);
and the tree,T . above

Eq.(SM4.5)
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I The set of ancestry indices. Section R2
I, (! " ) The ancestry index assigned to tixeth site | Section R2
of a sequence.
/= [0 5t ] An array ofancestry indices assigned to th| Section R2,
sites of a sequencef(length L). Figure 2c
Y (8,88, 1 TS The set of all pains%tsm,{mi(b)} g Section RY,
T7 above
defined on T that areconsistent with | Eq.(R7.4);
the MSA, /[s, Sy S« - above
Eq.(SM-4.4)
! An alphabet, or the set of all possible Section R1
residues (such as 4 bases for DNA or 20
amino acids for proteins).
I, (! ! ) The residue at thex-th site of a sequence.| SectionR1
I :[.’ . L] An array of residues assigned to the sites | Section R1,
a sequence (of length. ). Figure 2a
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