A simple bound may be defined for the positive values of the correlation functions sidelobes in De Bruijn sequences [16]:

\[0 \leq \max \theta(\tau) \leq 2^n - 4 \left\lfloor \frac{2^n}{2n} \right\rfloor^+, \text{ for } 1 \leq \tau \leq L - 1 \]

where \([x]^+ \) denotes the smallest integer greater than or equal to \(x \). The left inequality follows from the second and third properties in (6); the right inequality is due to the peculiar features of De Bruijn sequences, that are full length sequences, a period of which includes all the possible binary \(n \)-tuples. In the case of binary De Bruijn sequences of span \(n = 5 \), the bound gives \(0 \leq \max \theta(\tau) \leq 16 \).

The cross-correlation computed between pairs of De Bruijn sequences \(a \) and \(b \) randomly chosen, of the same span and period \(L \), denoted as \(r_{ab}(\tau) = \sum_{i=0}^{L-1} a_i b_{i+\tau} \), for \(0 \leq \tau \leq L - 1 \), exhibits properties very similar to those discussed for the auto-correlation function:

\[r_{ab}(\tau) = r_{ba}(L - \tau), \text{ for } 0 \leq \tau \leq L - 1 \]
\[\sum_{\tau=0}^{L-1} r_{ab}(\tau) = 0 \]
\[r_{ab}(\tau) \equiv 0 \mod 4, \text{ for } n \geq 2, \forall \tau \]

For the cross-correlation function of a pair of De Bruijn sequences \(a \) and \(b \) (\(a \neq b \)) of the same span \(n \), the following bound holds [16]:

\[-2^n \leq r_{ab}(\tau) \leq 2^n - 4, \text{ for } 0 \leq \tau \leq L - 1 \]

All the possible cross-correlation values are integer multiple of 4. Fig. 2 shows the average cross-correlation profile of binary De Bruijn sequences of span 5.

Fig. 2. Average cross-correlation profile of binary De Bruijn sequences of length 32