Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures

Joel I-Jan Wang1,7*, Daniel Rodan-Legrain2,7, Landry Bretheau3, Daniel L. Campbell1, Bharath Kannan1,4, David Kim5, Morten Kjaergaard1, Philip Krantz1, Gabriel O. Samach4,5, Fei Yan1, Jonilyn L. Yoder5, Kenji Watanabe6, Takashi Taniguchi6, Terry P. Orlando1,4, Simon Gustavsson1, Pablo Jarillo-Herrero2* and William D. Oliver1,2,5*

1Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA. 2Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA. 3Laboratoire des Solides Irradiés, Ecole Polytechnique, CNRS, CEA, Palaiseau, France. 4Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA. 5Massachusetts Institute of Technology (MIT) Lincoln Laboratory, Lexington, MA, USA. 6Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan. *These authors contributed equally: Joel I-Jan Wang, Daniel Rodan-Legrain. *e-mail: joelwang@mit.edu; pjarillo@mit.edu; william.oliver@mit.edu

SUPPLEMENTARY INFORMATION

In the format provided by the authors and unedited.
Supplementary fig.1. Spectroscopy data from additional devices. Resonator (left panels) and qubit spectra (right panels) as functions of backgate voltage V_g from three additional devices shown in (a), (b), and (c) respectively. Note in device (c), for which the graphene is presumably highly-doped ($V_{CNP} \sim 7.8$), the Fabry–Pérot oscillation of qubit frequency is not observed. Data is plotted in arbitrary units.
Supplementary fig. 2. Spectroscopy data from additional devices. Resonator (left panels) and qubit spectra (right panels) as functions of backgate voltage V_g from three additional devices, shown in (a), (b), and (c) respectively. Data is plotted in arbitrary units.
Supplementary fig. 3. Time domain measurements from additional devices [corresponding to supplementary fig. 1(c)]. (a)-(c) Rabi oscillation measured with different qubit-drive power P_{dr} at $V_g = -7.59$ V. (d) Ramsey fringes as a function of qubit-drive frequency f_{dr} and time delay τ_{Ramsey} measured at $V_g = -7.34$ V. The energy relaxation time T_1 and dephasing time T_2^* are of the same order as those reported in the main text. Data is plotted in arbitrary units.