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What are we trying to accomplish? 

We’re trying to transform HPC data services from a monoculture to an 
ecosystem. 
● Redefining how teams design and develop distributed services for use in 

HPC systems. 
● Providing a portable ”programming model” for these services. 
● Providing a set of core building blocks. 
● Demonstrating the methodology and tools with DOE science use cases. 
 
We’re trying to foster a community of service developers. 
● Developing a set of training materials that will help others employ the 

tools. 
● Making all these building blocks available to the larger community. 



How is this traditionally done in HPC? 
File system monoculture for data (dis)service 
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All applications use the same “one size fits all” file system 
interfaces, semantics, and policies for data access. 



Mochi components and microservices 

What’s new in the Mochi approach? 
An ecosystem of services co-existing and reusing functionality 

This approach has 

allowed us to 

simultaneously 

pursue multiple 

specialized service 

implementations. 
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Mochi services 

Instead of “one size fits all”, Mochi data services present 
tailored interfaces, semantics, and policies for data access 

while still leveraging robust building blocks. 

DeltaFS FlameStore HEPnOS 

Composable building blocks 



What’s new in the Mochi approach? 
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3. Multiple methods of 

programming (C, C++, Python), 

more accessible. 

 

4. Portable RPC communication 

library designed for multi-

service environments 

1. Core functionality 

developed as stand-

alone components and 

“microservices”, cleanly 

reusable in different 

configurations and 

products. 

2. Modularity eases 

adaptation to new 

hardware technologies. 
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Thanks! 
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