
1

Philip Carns, Matthieu Dorier, Kevin
Harms, Robert Latham, Rob Ross, and
Shane Snyder
Argonne National Laboratory

Sam Gutierrez, Bob Robey, Brad
Settlemyer, and Galen Shipman
Los Alamos National Laboratory

George Amvrosiadis, Chuck Cranor,
Greg Ganger, nd Qing Zheng
Carnegie Mellon University

Dana Robinson and Jerome Soumagne
The HDF Group

 Garth Gibson
 Vector Institute for Artificial Intelligence

Mochi: Composing Data Services
for High-Performance
Computing Environments

Ross R, Amvrosiadis G, Carns P et al. Mochi: Composing data services for high-

performance computing environments. JOURNAL OF COMPUTER SCIENCE AND

TECHNOLOGY 35(1): 121–144 Jan. 2020. DOI 10.1007/s11390-020-9802-0

What are we trying to accomplish?

We’re trying to transform HPC data services from a monoculture to an
ecosystem.
● Redefining how teams design and develop distributed services for use in

HPC systems.
● Providing a portable ”programming model” for these services.
● Providing a set of core building blocks.
● Demonstrating the methodology and tools with DOE science use cases.

We’re trying to foster a community of service developers.
● Developing a set of training materials that will help others employ the

tools.
● Making all these building blocks available to the larger community.

How is this traditionally done in HPC?
File system monoculture for data (dis)service

Particle
Simulation

(e.g. VPIC)
C code

Machine Learning
Ensemble

(e.g. CANDLE)
Python code

Analysis of
Experimental Data

(e.g. art Framework)
C++ code

small writes &
indexed queries

caching large,
write-once objects

bulk ingest &
iterative access

Applications

Data access needs

File system interface
(POSIX system calls)

Storage system Parallel File System

All applications use the same “one size fits all” file system
interfaces, semantics, and policies for data access.

Mochi components and microservices

What’s new in the Mochi approach?
An ecosystem of services co-existing and reusing functionality

This approach has

allowed us to

simultaneously

pursue multiple

specialized service

implementations.

Particle
Simulation

(e.g. VPIC)
C code

Machine Learning
Ensemble

(e.g. CANDLE)
Python code

Analysis of
Experimental Data

(e.g. art Framework)
C++ code

small writes &
indexed queries

caching large,
write-once objects

bulk ingest &
iterative access

Applications

Data access needs

Custom service interfaces
with native language bindings

Mochi services

Instead of “one size fits all”, Mochi data services present
tailored interfaces, semantics, and policies for data access

while still leveraging robust building blocks.

DeltaFS FlameStore HEPnOS

Composable building blocks

What’s new in the Mochi approach?

Object API

Client
Memory

Object Provider

Application Process

Object Client

Object provider node

Application node

PMDK or
POSIX

Extent

Provider

Bake

Client

DB (e.g.,

LevelDB)

KV Client

KV Provider

KV Provider

Margo

Mercury Argobots
LevelDB

Berkeley

DB

3. Multiple methods of

programming (C, C++, Python),

more accessible.

4. Portable RPC communication

library designed for multi-

service environments

1. Core functionality

developed as stand-

alone components and

“microservices”, cleanly

reusable in different

configurations and

products.

2. Modularity eases

adaptation to new

hardware technologies.

6

Thanks!

This work is in part supported by the Director, Office of Advanced Scientific

Computing Research, Office of Science, of the U.S. Department of Energy

under Contract No. DE-AC02-06CH11357; in part supported by the Exascale

Computing Project (17-SC-20-SC), a joint project of the U.S. Department of

Energy’s Office of Science and National Nuclear Security Administration,

responsible for delivering a capable exascale ecosystem, including

software, applications, and hardware technology, to support the nation’s

exascale computing imperative; and in part supported by the U.S.

Department of Energy, Office of Science, Office of Advanced Scientific

Computing Research, Scientific Discovery through Advanced Computing

(SciDAC) program.

 http://www.mcs.anl.gov/research/projects/mochi/

http://www.mcs.anl.gov/research/projects/mochi/

