Functional and pharmacological induced structural changes of the Cystic Fibrosis Transmembrane Conductance Regulator in the membrane solved using SAXS

Debora Baroni, Olga Zegarra-Moran and Oscar Moran

Supplementary Table
Supplementary Table 1. Parameters of the best fit of SAXS data to the multi-Gaussian electron density model for the membranes, according to Equation 3. Each Gaussian k is defined by the peak electron density ρ_k, the peak width σ_k, and the peak position ϵ_k ($k \in \text{inner, in, tail, out or outer}$, as defined in Methods). R is the radius of the vesicle, ξ is a proportionality factor, χ^2 is defined in Equation 6, and r^2 is the correlation coefficient of the fitting of the model to the experimental data.

<table>
<thead>
<tr>
<th></th>
<th>null cells</th>
<th>WT-CFTR cells</th>
<th>AF508-CFTR cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>native</td>
<td>phosphorylated</td>
<td>dephosphorylated</td>
</tr>
<tr>
<td>ρ_{inner}</td>
<td>0.1475</td>
<td>0.0516</td>
<td>0.1668</td>
</tr>
<tr>
<td>σ_{inner} (nm)</td>
<td>0.3971</td>
<td>1.1642</td>
<td>0.3575</td>
</tr>
<tr>
<td>ϵ_{inner} (nm)</td>
<td>-2.0817</td>
<td>-2.0687</td>
<td>-1.9701</td>
</tr>
<tr>
<td>ρ_{in}</td>
<td>0.5731</td>
<td>0.6625</td>
<td>0.6064</td>
</tr>
<tr>
<td>σ_{in} (nm)</td>
<td>0.2874</td>
<td>0.3189</td>
<td>0.2496</td>
</tr>
<tr>
<td>ϵ_{in} (nm)</td>
<td>-0.9053</td>
<td>-1.3242</td>
<td>-1.0940</td>
</tr>
<tr>
<td>ρ_{tail}</td>
<td>-1.0000</td>
<td>-1.0000</td>
<td>-1.0000</td>
</tr>
<tr>
<td>σ_{tail} (nm)</td>
<td>0.3038</td>
<td>0.3026</td>
<td>0.2908</td>
</tr>
<tr>
<td>ϵ_{tail} (nm)</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>ρ_{out}</td>
<td>0.6596</td>
<td>0.6386</td>
<td>0.5776</td>
</tr>
<tr>
<td>σ_{out} (nm)</td>
<td>0.2708</td>
<td>0.3007</td>
<td>0.3114</td>
</tr>
<tr>
<td>ϵ_{out} (nm)</td>
<td>0.7269</td>
<td>0.9404</td>
<td>0.7745</td>
</tr>
<tr>
<td>ρ_{outer}</td>
<td>~ 0</td>
<td>~ 0</td>
<td>~ 0</td>
</tr>
<tr>
<td>σ_{outer} (nm)</td>
<td>0.2615</td>
<td>0.0156</td>
<td>1.1487</td>
</tr>
<tr>
<td>ϵ_{outer} (nm)</td>
<td>1.6438</td>
<td>1.0108</td>
<td>1.2489</td>
</tr>
<tr>
<td>R (nm)</td>
<td>72.4828</td>
<td>78.9200</td>
<td>69.9786</td>
</tr>
<tr>
<td>ξ</td>
<td>0.0026</td>
<td>0.0008</td>
<td>0.0011</td>
</tr>
<tr>
<td>χ^2</td>
<td>0.8724</td>
<td>2.0268</td>
<td>1.0769</td>
</tr>
<tr>
<td>r</td>
<td>0.9964</td>
<td>0.9881</td>
<td>0.9866</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>native</th>
<th>treated 27 °C</th>
<th>treated VX-809</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_{inner}</td>
<td>0.1696</td>
<td>0.0798</td>
<td>0.0627</td>
</tr>
<tr>
<td>σ_{inner} (nm)</td>
<td>0.9682</td>
<td>1.0772</td>
<td>1.0237</td>
</tr>
<tr>
<td>ϵ_{inner} (nm)</td>
<td>-3.1906</td>
<td>-3.3338</td>
<td>-4.7866</td>
</tr>
<tr>
<td>ρ_{in}</td>
<td>1.0073</td>
<td>0.9389</td>
<td>0.6854</td>
</tr>
<tr>
<td>σ_{in} (nm)</td>
<td>0.2796</td>
<td>0.2627</td>
<td>0.3098</td>
</tr>
<tr>
<td>ϵ_{in} (nm)</td>
<td>-0.8055</td>
<td>-0.5523</td>
<td>-1.6755</td>
</tr>
<tr>
<td>ρ_{tail}</td>
<td>-1.0000</td>
<td>-1.0000</td>
<td>-1.0000</td>
</tr>
<tr>
<td>σ_{tail} (nm)</td>
<td>0.6129</td>
<td>0.6240</td>
<td>0.3911</td>
</tr>
<tr>
<td>ϵ_{tail} (nm)</td>
<td>-0.9053</td>
<td>-1.0940</td>
<td>-0.9053</td>
</tr>
<tr>
<td>ρ_{out}</td>
<td>0.5731</td>
<td>0.9319</td>
<td>0.6422</td>
</tr>
<tr>
<td>σ_{out} (nm)</td>
<td>0.3575</td>
<td>0.7314</td>
<td>0.8203</td>
</tr>
<tr>
<td>ϵ_{out} (nm)</td>
<td>-0.9053</td>
<td>-1.0940</td>
<td>-1.0940</td>
</tr>
<tr>
<td>ρ_{outer}</td>
<td>0.0268</td>
<td>0.0013</td>
<td>0.3436</td>
</tr>
<tr>
<td>σ_{outer} (nm)</td>
<td>0.2615</td>
<td>1.1487</td>
<td>0.1749</td>
</tr>
<tr>
<td>ϵ_{outer} (nm)</td>
<td>1.6438</td>
<td>1.0108</td>
<td>0.7916</td>
</tr>
<tr>
<td>R (nm)</td>
<td>72.4828</td>
<td>83.7190</td>
<td>75.2968</td>
</tr>
<tr>
<td>ξ</td>
<td>0.0026</td>
<td>0.0008</td>
<td>0.0009</td>
</tr>
<tr>
<td>χ^2</td>
<td>0.8724</td>
<td>2.0268</td>
<td>1.0769</td>
</tr>
<tr>
<td>r</td>
<td>0.9964</td>
<td>0.9881</td>
<td>0.9866</td>
</tr>
</tbody>
</table>